Skip to main content

Research Repository

Advanced Search

Advances in MXene-based photoanodes for water-splitting

Bahari, M. B.; Mamat, C. R.; Jalil, A. A.; Hassan, N. S.; Khusnun, N. F.; Sawal, M. H.; Izzudin, N. M.; Hatta, A. H.; Zein, S. H.; Le, V. G.

Authors

M. B. Bahari

C. R. Mamat

A. A. Jalil

N. S. Hassan

N. F. Khusnun

M. H. Sawal

N. M. Izzudin

A. H. Hatta

Profile Image

Dr Sharif Zein S.H.Zein@hull.ac.uk
Senior Fellow HEA| Reader in Biorefinery Processes and Reaction Engineering| PI of Bioref Group

V. G. Le



Abstract

MXene, composed of two-dimensional transition metal carbides/nitrides, has excellent potential as photoanode material for photoelectrochemical water-splitting applications. Its exceptional physical and chemical properties, including high electrical conductivity, wide bandgap, and high surface area, make it a promising material for photoelectrochemical applications. In this regard, a comprehensive review of recent studies on fabrication strategies for MXene-based photoanodes and their performance in photoelectrochemical water-splitting is necessary. Thus, this review paper provides a comprehensive overview of MXene-based photoanodes for photoelectrochemical water-splitting, focusing on the fundamental properties of MXenes, including their structure, physical and chemical features, as well as synthesis strategies. The review also discusses recent progress in MXene-based photoanodes in photoelectrochemical water-splitting, highlighting their superior performance. Remarkably, coupling MXenes with other semiconductors such as titanium dioxide, bismuth vanadate, zinc oxide, ferric oxide, cadmium sulfide, and InGaN nanorods led to enhancement in light absorption efficiency, photocurrent density up to 7.27 x10-3 A cm−2, charge transfer and separation efficiency, and stability. Finally, the paper discusses future perspectives and potential applications of MXene-based photoanodes in photoelectrochemical water-splitting. This review provides valuable insights into the current state of knowledge and offers an outline for future research in this area.

Citation

Bahari, M. B., Mamat, C. R., Jalil, A. A., Hassan, N. S., Khusnun, N. F., Sawal, M. H., …Le, V. G. (2023). Advances in MXene-based photoanodes for water-splitting. Journal of Electroanalytical Chemistry, 947, Article 117750. https://doi.org/10.1016/j.jelechem.2023.117750

Journal Article Type Article
Acceptance Date Aug 24, 2023
Online Publication Date Aug 25, 2023
Publication Date Oct 15, 2023
Deposit Date Sep 30, 2023
Journal Journal of Electroanalytical Chemistry
Print ISSN 1572-6657
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 947
Article Number 117750
DOI https://doi.org/10.1016/j.jelechem.2023.117750
Public URL https://hull-repository.worktribe.com/output/4405779