Skip to main content

Research Repository

Advanced Search

Computational methods for finding long simple cycles in complex networks

Chalupa, David; Balaghan, Phininder; Hawick, Ken A.; Gordon, Neil A.


David Chalupa

Phininder Balaghan

Ken A. Hawick


© 2017 Elsevier B.V. Detection of long simple cycles in real-world complex networks finds many applications in layout algorithms, information flow modelling, as well as in bioinformatics. In this paper, we propose two computational methods for finding long cycles in real-world networks. The first method is an exact approach based on our own integer linear programming formulation of the problem and a data mining pipeline. This pipeline ensures that the problem is solved as a sequence of integer linear programs. The second method is a multi-start local search heuristic, which combines an initial construction of a long cycle using depth-first search with four different perturbation operators. Our experimental results are presented for social network samples, graphs studied in the network science field, graphs from DIMACS series, and protein-protein interaction networks. These results show that our formulation leads to a significantly more efficient exact approach to solve the problem than a previous formulation. For 14 out of 22 networks, we have found the optimal solutions. The potential of heuristics in this problem is also demonstrated, especially in the context of large-scale problem instances.


Chalupa, D., Balaghan, P., Hawick, K. A., & Gordon, N. A. (2017). Computational methods for finding long simple cycles in complex networks. Knowledge-Based Systems, 125, 96-107.

Acceptance Date Mar 29, 2017
Online Publication Date Mar 30, 2017
Publication Date 2017-06
Deposit Date May 30, 2017
Publicly Available Date Apr 3, 2018
Journal Knowledge-based systems
Print ISSN 0950-7051
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 125
Pages 96-107
Keywords Long simple cycles; Long cycles; Complex networks; Integer linear programming; Graph algorithms; Local search; Hamiltonian cycles
Public URL
Publisher URL
Additional Information This is the accepted manuscript of an article published in Knowledge-based systems, 2017. The version of record is available at the DOI link in this record
Contract Date Apr 3, 2018


You might also like

Downloadable Citations