William Clegg
Extended Hydrogen-Bonded Molybdenum Arrays Derived from Carboxylic Acids and Dianilines: ROP Capability of the Complexes and Parent Acids and Dianilines
Clegg, William; Elsegood, Mark R.J.; Redshaw, Carl
Abstract
From reactions involving sodium molybdate and dianilines [2,2′-(NH2)C6H4]2(CH2)n (n = 0, 1, 2) and amino-functionalized carboxylic acids 1,2-(NH2)(CO2H)C6H4 or 2-H2NC6H3-1,4-(CO2H)2, in the presence of Et3N and Me3SiCl, products adopting H-bonded networks have been characterized. In particular, the reaction of 2,2′-diaminobiphenyl, [2,2′-NH2(C6H4)]2, and 2-aminoterephthalic acid, H2NC6H3-1,4-(CO2H)2, led to the isolation of [(MoCl3[2,2′-N(C6H4)]2}{HNC6H3-1-(CO2),4-(CO2H)]·2[2,2′-NH2(C6H4)]2·3.5MeCN (1·3.5MeCN), which contains intra-molecular N–H∙∙∙Cl H-bonds and slipped π∙∙∙π interactions. Similar use of 2,2′-methylenedianiline, [2,2′-(NH2)C6H4]2CH2, in combination with 2-aminoterephthalic acid led to the isolation of [MoCl2(O2CC6H3NHCO2SiMe3)(NC6H4CH2C6H4NH2)]·3MeCN (2·3MeCN). Complex 2 contains extensive H-bonds between pairs of centrosymmetrically-related molecules. In the case of 2,2′ethylenedianiline, [2,2′-(NH2)C6H4]2CH2CH2, and anthranilic acid, 1,2-(NH2)(CO2H)C6H4, reaction with Na2MoO4 in the presence of Et3N and Me3SiCl in refluxing 1,2-dimethoxyethane afforded the complex [MoCl3{1,2-(NH)(CO2)C6H4}{NC6H4CH2CH2C6H4NH3}]·MeCN (3·MeCN). In 3, there are intra-molecular bifurcated H-bonds between NH3 H atoms and chlorides, whilst pairs of molecules H-bond further via the NH3 groups to the non-coordinated carboxylate oxygen, resulting in H-bonded chains. Complexes 1 to 3 have been screened for the ring opening polymerization (ROP) of both ε-caprolactone (ε-CL) and δ-valerolactone (δ-VL) using solvent-free conditions under N2 and air. The products were of moderate to high molecular weight, with wide Ð values, and comprised several types of polymer families, including OH-terminated, OBn-terminated (for PCL only), and cyclic polymers. The results of metal-free ROP using the dianilines [2,2′-(NH2)C6H4]2(CH2)n (n = 0, 1, 2) and the amino-functionalized carboxylic acids 1,2-(NH2)(CO2H)C6H4 or 2-H2NC6H3-1,4-(CO2H)2 under similar conditions (no BnOH) are also reported. The dianilines were found to be capable of the ROP of δ-VL (but not ε-CL), whilst anthranilic acid outperformed 2-aminoterephthalic acid for both ε-Cl and δ-VL.
Citation
Clegg, W., Elsegood, M. R., & Redshaw, C. (2024). Extended Hydrogen-Bonded Molybdenum Arrays Derived from Carboxylic Acids and Dianilines: ROP Capability of the Complexes and Parent Acids and Dianilines. Catalysts, 14(3), Article 214. https://doi.org/10.3390/catal14030214
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 15, 2024 |
Online Publication Date | Mar 21, 2024 |
Publication Date | Mar 1, 2024 |
Deposit Date | Apr 6, 2024 |
Publicly Available Date | Apr 9, 2024 |
Journal | Catalysts |
Electronic ISSN | 2073-4344 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 14 |
Issue | 3 |
Article Number | 214 |
DOI | https://doi.org/10.3390/catal14030214 |
Keywords | Hydrogen-bonded network; Amino-functionalized carboxylic acids; Dianilines; Molybdenum complexes; Solid-state structures; Ring opening polymerization (ROP); Metal-free ROP; Cyclic esters |
Public URL | https://hull-repository.worktribe.com/output/4619537 |
Files
Published article
(5.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
You might also like
Novel spiropyran fluorescent probes based on ESIPT and ICT: pH Response & Cyanide Detection
(2024)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search