Skip to main content

Research Repository

Advanced Search

The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter, and the early Universe

EPTA Collaboration and InPTA Collaboration; Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Bak Nielsen, A.-S.; Bassa, C. G.; Bathula, A.; Berthereau, A.; Bonetti, M.; Bortolas, E.; Brook, P. R.; Burgay, M.; Caballero, R. N.; Chalumeau, A.; Champion, D. J.; Chanlaridis, S.; Chen, S.; Cognard, I.; Dandapat, S.; Deb, D.; Desai, S.; Desvignes, G.; Dhanda-Batra, N.; Dwivedi, C.; Falxa, M.; Ferdman, R. D.; Franchini, A.; Gair, J. R.; Goncharov, B.; Gopakumar, A.; Graikou, E.; Grießmeier, J.-M.; Gualandris, A.; Guillemot, L.; Guo, Y. J.; Gupta, Y.; Hisano, S.; Hu, H.; Iraci, F.; Izquierdo-Villalba, D.; Jang, J.; Jawor, J.; Janssen, G. H.; Jessner, A.; Joshi, B. C.; Kareem, F.; Karuppusamy, R.; Keane, E. F.; Keith, M. J.; Kharbanda, D.; Kikunaga, T.; Kolhe, N.; Kramer, M.; Krishnakumar, M. A.; Lackeos, K.; Lee, K. J.; Liu, K.; Liu, Y.; Lyne, A. G.; McKee, J. W.; Maan, Y.; Main, R. A.; Mickaliger, M. B.; Niţu, I. C.; Nobleson, K.; Paladi, A. K.; Parthasarathy, A.; Perera, B....

Authors

EPTA Collaboration and InPTA Collaboration

J. Antoniadis

P. Arumugam

S. Arumugam

S. Babak

M. Bagchi

A.-S. Bak Nielsen

C. G. Bassa

A. Bathula

A. Berthereau

M. Bonetti

E. Bortolas

P. R. Brook

M. Burgay

R. N. Caballero

A. Chalumeau

D. J. Champion

S. Chanlaridis

S. Chen

I. Cognard

S. Dandapat

D. Deb

S. Desai

G. Desvignes

N. Dhanda-Batra

C. Dwivedi

M. Falxa

R. D. Ferdman

A. Franchini

J. R. Gair

B. Goncharov

A. Gopakumar

E. Graikou

J.-M. Grießmeier

A. Gualandris

L. Guillemot

Y. J. Guo

Y. Gupta

S. Hisano

H. Hu

F. Iraci

D. Izquierdo-Villalba

J. Jang

J. Jawor

G. H. Janssen

A. Jessner

B. C. Joshi

F. Kareem

R. Karuppusamy

E. F. Keane

M. J. Keith

D. Kharbanda

T. Kikunaga

N. Kolhe

M. Kramer

M. A. Krishnakumar

K. Lackeos

K. J. Lee

K. Liu

Y. Liu

A. G. Lyne

J. W. McKee

Y. Maan

R. A. Main

M. B. Mickaliger

I. C. Niţu

K. Nobleson

A. K. Paladi

A. Parthasarathy

B. B. P. Perera

D. Perrodin

A. Petiteau

N. K. Porayko

A. Possenti

T. Prabu

H. Quelquejay Leclere

P. Rana

A. Samajdar

S. A. Sanidas

A. Sesana

G. Shaifullah

J. Singha

L. Speri

R. Spiewak

A. Srivastava

B. W. Stappers

M. Surnis

S. C. Susarla

A. Susobhanan

K. Takahashi

P. Tarafdar

G. Theureau

C. Tiburzi

E. van der Wateren

A. Vecchio

V. Venkatraman Krishnan

J. P. W. Verbiest

J. Wang

L. Wang

Z. Wu

P. Auclair

E. Barausse

C. Caprini

M. Crisostomi

F. Fastidio

T. Khizriev

H. Middleton

A. Neronov

K. Postnov

A. Roper Pol

D. Semikoz

C. Smarra

D. A. Steer

R. J. Truant

S. Valtolina



Abstract

The European Pulsar Timing Array (EPTA) and Indian Pulsar Timing Array (InPTA) collaborations have measured a low-frequency common signal in the combination of their second and first data releases, respectively, with the correlation properties of a gravitational wave background (GWB). Such a signal may have its origin in a number of physical processes including a cosmic population of inspiralling supermassive black hole binaries (SMBHBs); inflation, phase transitions, cosmic strings, and tensor mode generation by the non-linear evolution of scalar perturbations in the early Universe; and oscillations of the Galactic potential in the presence of ultra-light dark matter (ULDM). At the current stage of emerging evidence, it is impossible to discriminate among the different origins. Therefore, for this paper, we consider each process separately, and investigated the implications of the signal under the hypothesis that it is generated by that specific process. We find that the signal is consistent with a cosmic population of inspiralling SMBHBs, and its relatively high amplitude can be used to place constraints on binary merger timescales and the SMBH-host galaxy scaling relations. If this origin is confirmed, this would be the first direct evidence that SMBHBs merge in nature, adding an important observational piece to the puzzle of structure formation and galaxy evolution. As for early Universe processes, the measurement would place tight constraints on the cosmic string tension and on the level of turbulence developed by first-order phase transitions. Other processes would require non-standard scenarios, such as a blue-tilted inflationary spectrum or an excess in the primordial spectrum of scalar perturbations at large wavenumbers. Finally, a ULDM origin of the detected signal is disfavoured, which leads to direct constraints on the abundance of ULDM in our Galaxy.

Citation

EPTA Collaboration and InPTA Collaboration, Antoniadis, J., Arumugam, P., Arumugam, S., Babak, S., Bagchi, M., Bak Nielsen, A.-S., Bassa, C. G., Bathula, A., Berthereau, A., Bonetti, M., Bortolas, E., Brook, P. R., Burgay, M., Caballero, R. N., Chalumeau, A., Champion, D. J., Chanlaridis, S., Chen, S., Cognard, I., …Valtolina, S. (2024). The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter, and the early Universe. Astronomy and Astrophysics, 685, Article A94. https://doi.org/10.1051/0004-6361/202347433

Journal Article Type Article
Acceptance Date Nov 20, 2023
Online Publication Date May 8, 2024
Publication Date 2024-05
Deposit Date May 13, 2024
Publicly Available Date May 14, 2024
Print ISSN 0004-6361
Electronic ISSN 1432-0746
Publisher EDP Sciences
Peer Reviewed Peer Reviewed
Volume 685
Article Number A94
DOI https://doi.org/10.1051/0004-6361/202347433
Keywords Black hole physics; Gravitation; Gravitational waves; Methods: data analysis; Pulsars: general; dark matter; Early Universe
Public URL https://hull-repository.worktribe.com/output/4664466

Files





You might also like



Downloadable Citations