Safakath Karuthedath
Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells
Karuthedath, Safakath; Gorenflot, Julien; Firdaus, Yuliar; Chaturvedi, Neha; De Castro, Catherine S.P.; Harrison, George T.; Khan, Jafar I.; Markina, Anastasia; Balawi, Ahmed H.; Peña, Top Archie Dela; Liu, Wenlan; Liang, Ru Ze; Sharma, Anirudh; Paleti, Sri H.K.; Zhang, Weimin; Lin, Yuanbao; Alarousu, Erkki; Anjum, Dalaver H.; Beaujuge, Pierre M.; De Wolf, Stefaan; McCulloch, Iain; Anthopoulos, Thomas D.; Baran, Derya; Andrienko, Denis; Laquai, Frédéric
Authors
Julien Gorenflot
Yuliar Firdaus
Neha Chaturvedi
Catherine S.P. De Castro
George T. Harrison
Dr Jafar Khan J.Khan2@hull.ac.uk
Lecturer
Anastasia Markina
Ahmed H. Balawi
Top Archie Dela Peña
Wenlan Liu
Ru Ze Liang
Anirudh Sharma
Sri H.K. Paleti
Weimin Zhang
Yuanbao Lin
Erkki Alarousu
Dalaver H. Anjum
Pierre M. Beaujuge
Stefaan De Wolf
Iain McCulloch
Thomas D. Anthopoulos
Derya Baran
Denis Andrienko
Frédéric Laquai
Abstract
In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor–acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor–NFA interface caused by the acceptors’ quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs.
Citation
Karuthedath, S., Gorenflot, J., Firdaus, Y., Chaturvedi, N., De Castro, C. S., Harrison, G. T., …Laquai, F. (2021). Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials, 20(3), 378-384. https://doi.org/10.1038/s41563-020-00835-x
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 17, 2020 |
Online Publication Date | Oct 23, 2020 |
Publication Date | Mar 1, 2021 |
Deposit Date | May 16, 2024 |
Publicly Available Date | May 21, 2024 |
Journal | Nature Materials |
Print ISSN | 1476-1122 |
Electronic ISSN | 1476-4660 |
Publisher | Nature Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 20 |
Issue | 3 |
Pages | 378-384 |
DOI | https://doi.org/10.1038/s41563-020-00835-x |
Keywords | Organic solar cells; Non-fullerene acceptors; Energy transfer; Charge transfer; Driving force |
Public URL | https://hull-repository.worktribe.com/output/4667068 |
Files
Accepted manuscript
(2 Mb)
PDF
Copyright Statement
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41563-020-00835-x
You might also like
Thermally-Induced Degradation in PM6:Y6-Based Bulk Heterojunction Organic Solar Cells
(2023)
Journal Article
28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell
(2021)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search