Skip to main content

Research Repository

Advanced Search

Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells

Karuthedath, Safakath; Gorenflot, Julien; Firdaus, Yuliar; Chaturvedi, Neha; De Castro, Catherine S.P.; Harrison, George T.; Khan, Jafar I.; Markina, Anastasia; Balawi, Ahmed H.; Peña, Top Archie Dela; Liu, Wenlan; Liang, Ru Ze; Sharma, Anirudh; Paleti, Sri H.K.; Zhang, Weimin; Lin, Yuanbao; Alarousu, Erkki; Anjum, Dalaver H.; Beaujuge, Pierre M.; De Wolf, Stefaan; McCulloch, Iain; Anthopoulos, Thomas D.; Baran, Derya; Andrienko, Denis; Laquai, Frédéric

Authors

Safakath Karuthedath

Julien Gorenflot

Yuliar Firdaus

Neha Chaturvedi

Catherine S.P. De Castro

George T. Harrison

Anastasia Markina

Ahmed H. Balawi

Top Archie Dela Peña

Wenlan Liu

Ru Ze Liang

Anirudh Sharma

Sri H.K. Paleti

Weimin Zhang

Yuanbao Lin

Erkki Alarousu

Dalaver H. Anjum

Pierre M. Beaujuge

Stefaan De Wolf

Iain McCulloch

Thomas D. Anthopoulos

Derya Baran

Denis Andrienko

Frédéric Laquai



Abstract

In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor–acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor–NFA interface caused by the acceptors’ quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs.

Citation

Karuthedath, S., Gorenflot, J., Firdaus, Y., Chaturvedi, N., De Castro, C. S., Harrison, G. T., Khan, J. I., Markina, A., Balawi, A. H., Peña, T. A. D., Liu, W., Liang, R. Z., Sharma, A., Paleti, S. H., Zhang, W., Lin, Y., Alarousu, E., Anjum, D. H., Beaujuge, P. M., De Wolf, S., …Laquai, F. (2021). Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials, 20(3), 378-384. https://doi.org/10.1038/s41563-020-00835-x

Journal Article Type Article
Acceptance Date Sep 17, 2020
Online Publication Date Oct 23, 2020
Publication Date Mar 1, 2021
Deposit Date May 16, 2024
Publicly Available Date May 21, 2024
Journal Nature Materials
Print ISSN 1476-1122
Electronic ISSN 1476-4660
Publisher Nature Publishing Group
Peer Reviewed Peer Reviewed
Volume 20
Issue 3
Pages 378-384
DOI https://doi.org/10.1038/s41563-020-00835-x
Keywords Organic solar cells; Non-fullerene acceptors; Energy transfer; Charge transfer; Driving force
Public URL https://hull-repository.worktribe.com/output/4667068

Files

Accepted manuscript (2 Mb)
PDF

Copyright Statement
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41563-020-00835-x




You might also like



Downloadable Citations