Oliver A. Thompson
Predictions for CO emission and the CO-to-H2 conversion factor in galaxy simulations with non-equilibrium chemistry
Thompson, Oliver A.; Richings, Alexander J.; Gibson, Brad K.; Faucher-Giguère, Claude André; Feldmann, Robert; Hayward, Christopher C.
Authors
Dr Alex Richings A.J.Richings@hull.ac.uk
Lecturer in Data Science, Artificial Intelligence and Modelling
Brad K. Gibson
Claude André Faucher-Giguère
Robert Feldmann
Christopher C. Hayward
Abstract
Our ability to trace the star-forming molecular gas is important to our understanding of the Universe. We can trace this gas using CO emission, converting the observed CO intensity into the H2 gas mass of the region using the CO-to-H2 conversion factor (𝑋_CO). In this paper, we use simulations to study the conversion factor and the molecular gas within galaxies. We analysed a suite of simulations of isolated disc galaxies, ranging from dwarfs to Milky Way-mass galaxies, that were run using the FIRE-2 subgrid models coupled to the CHIMES non-equilibrium chemistry solver. We use the non-equilibrium abundances from the simulations, and we also compare to results using abundances assuming equilibrium, which we calculate from the simulation in post-processing. Our non-equilibrium simulations are able to reproduce the relation between CO and H2 column densities, and the relation between 𝑋_CO and metallicity, seen within observations of the Milky Way. We also compare to the xCOLD GASS survey, and find agreement with their data to our predicted CO luminosities at fixed star formation rate. We also find the multivariate function used by xCOLD GASS overpredicts the H2 mass for our simulations, motivating us to suggest an alternative multivariate function of our fitting, though we caution that this fitting is uncertain due to the limited range of galaxy conditions covered by our simulations. We also find that the non-equilibrium chemistry has little effect on the conversion factor (<5%) for our high-mass galaxies, though still affects the H2 mass and 𝐿_CO by ≈25%.
Citation
Thompson, O. A., Richings, A. J., Gibson, B. K., Faucher-Giguère, C. A., Feldmann, R., & Hayward, C. C. (2024). Predictions for CO emission and the CO-to-H2 conversion factor in galaxy simulations with non-equilibrium chemistry. Monthly notices of the Royal Astronomical Society, 532(2), 1948-1965. https://doi.org/10.1093/mnras/stae1486
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 11, 2024 |
Online Publication Date | Jun 14, 2024 |
Publication Date | Aug 1, 2024 |
Deposit Date | Jul 4, 2024 |
Publicly Available Date | Jul 16, 2024 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 532 |
Issue | 2 |
Pages | 1948-1965 |
DOI | https://doi.org/10.1093/mnras/stae1486 |
Keywords | Astrochemistry; ISM: atoms; ISM: molecules; Galaxies: evolution; Galaxies: ISM |
Public URL | https://hull-repository.worktribe.com/output/4732313 |
Files
Published article
(3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© The Author(s) 2024.
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
A Large-scale Approach to Modeling Molecular Biosignatures: The Diatomics
(2022)
Journal Article
Formation and Morphology of the First Galaxies in the Cosmic Morning
(2022)
Journal Article
Chemical evolution of fluorine in the Milky Way
(2022)
Journal Article
Horizons: nuclear astrophysics in the 2020s and beyond
(2022)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search