Skip to main content

Research Repository

Advanced Search

Elemental and isotopic behaviour of Zn in Deccan basalt weathering profiles: Chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soils

Suhr, Nils; Schoenberg, Ronny; Chew, David; Rosca, Carolina; Widdowson, Mike; Kamber, Balz S.

Authors

Nils Suhr

Ronny Schoenberg

David Chew

Carolina Rosca

Mike Widdowson

Balz S. Kamber



Abstract

Zinc (Zn) is a micronutrient for organisms and essential for plant growth, therefore knowledge of its elemental cycling in the surface environment is important regarding wider aspects of human nutrition and health. To explore the nature of Zn cycling, we compared its weathering behaviour in a sub-recent regolith versus an ancient laterite profile of the Deccan Traps, India – an area of known soil Zn deficiency. We demonstrate that progressive breakdown of primary minerals and the associated formation of phyllosilicates and iron oxides leads to a depletion in Zn, ultimately resulting in a loss of 80% in lateritic residues. This residue is mainly composed of resistant iron oxides and hydroxides ultimately delivering insufficient amounts of bio-available Zn. Moreover, (sub)-tropical weathering in regions experiencing extended tectonic quiescence (e.g., cratons) further enhance the development of old and deep soil profiles that become deficient in Zn. This situation is clearly revealed by the spatial correlation of the global distribution of laterites, cratons (Africa, India, South America and Australia) and known regions of Zn deficient soils that result in health problems for humans whose diet is derived from such land. We also investigate whether this elemental depletion of Zn is accompanied by isotope fractionation. In the saprolitic horizons of both weathering profiles, compositions of δ66ZnJMC-Lyon lie within the “crustal average” of + 0.27 ± 0.07‰ δ66ZnJMC-Lyon. By contrast, soil horizons enriched in secondary oxides show lighter isotope compositions. The isotopic signature of Zn (Δ66Znsample-protolith up to ~ − 0.65‰) during the formation of the ferruginous-lateritic weathering profile likely resulted from a combination of biotically- and kinetically-controlled sorption reactions on Fe-oxyhydroxides. Our findings suggest that oxide rich soil types/horizons in (sub)-tropical regions likely exert a control on riverine Zn isotope compositions such that these become heavier than the crustal average. This isotopic behaviour invites a broader study of global soils to test whether light isotope composition alone could serve as an indicator for reduced bioavailability of Zn.

Citation

Suhr, N., Schoenberg, R., Chew, D., Rosca, C., Widdowson, M., & Kamber, B. S. (2018). Elemental and isotopic behaviour of Zn in Deccan basalt weathering profiles: Chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soils. Science of the Total Environment, 619-620, 1451-1463. https://doi.org/10.1016/j.scitotenv.2017.11.112

Journal Article Type Article
Acceptance Date Nov 9, 2017
Online Publication Date Nov 28, 2017
Publication Date 2018-04
Deposit Date Dec 8, 2017
Journal Science of the Total Environment
Print ISSN 0048-9697
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 619-620
Pages 1451-1463
DOI https://doi.org/10.1016/j.scitotenv.2017.11.112
Keywords Zn deficiency; Soil; India; Hidden hunger; Malnutrition
Public URL https://hull-repository.worktribe.com/output/498644
Contract Date Dec 8, 2017