Skip to main content

Decoding the message from meteoritic stardust silicon carbide grains

Lewis, Karen M.; Lugaro, Maria; Gibson, Brad K.; Pilkington, Kate


Karen M. Lewis

Maria Lugaro

Kate Pilkington


SiC mainstream grains are presolar grains believed to form in the envelopes of carbon rich asymptotic giant branch (AGB) stars with masses between 1.5 and 3 solar masses. These grains represent a conundrum as the 29Si and 30Si abundances indicate that they formed in stars of super-solar metallicity, before the solar system formed. To shed light on this problem, we use silicon isotopic abundances to derive an age-metallicity relation for the stars believed to have produced the SiC mainstream grains. For 2732 mainstream SiC grains listed in the Presolar Grain Database, we use the 29Si abundances with the latest galactic chemical evolution (GCE) models to derive [Fe/H], and 30Si abundances along with the models of Zinner et al. (2006) to determine an approximate birth age for the parent AGB star. Comparing our age-metallicity relation with observational relationships derived for nearby stars, we find that the spread of [Fe/H] is in agreement, but the mean [Fe/H] in our relation is higher by 0.2 dex. We propose that this difference is because stars with higher [Fe/H] produce more dust and thus are over-represented in our age metallicity diagram, a finding consistent with previous published works. This result offers a solution for the long-standing problem of silicon in Stardust SiC grains, confirms the necessity of coupling chemistry and dynamics in simulations of the chemical evolution of our Galaxy, and constrains the modelling of dust condensation in stellar winds as a function of the metallicity.

Journal Article Type Conference Paper
Publication Date 2014
Print ISSN 0094-243X
Electronic ISSN 1551-7616
Publisher AIP Publishing
Peer Reviewed Peer Reviewed
Volume 1594
Pages 301-306
APA6 Citation Lewis, K. M., Lugaro, M., Gibson, B. K., & Pilkington, K. (2014). Decoding the message from meteoritic stardust silicon carbide grains. AIP conference proceedings, 1594, 301-306. doi:10.1063/1.4874086
Publisher URL


You might also like

Downloadable Citations