Skip to main content

Research Repository

Advanced Search

Electrical control of nonlinear quantum optics in a nano-photonic waveguide

Hallett, Dominic; Foster, Andrew P.; Hurst, David L.; Royall, Ben; Kok, Pieter; Clarke, Edmund; Itskevich, Igor E.; Fox, A. Mark; Skolnick, Maurice S.; Wilson, Luke R.


Dominic Hallett

Andrew P. Foster

David L. Hurst

Ben Royall

Pieter Kok

Edmund Clarke

Igor E. Itskevich

A. Mark Fox

Maurice S. Skolnick

Luke R. Wilson


© 2018 Optical Society of America. Quantum photonics is a rapidly developing platform for future quantum network applications. Waveguide-based architectures, in which embedded quantum emitters act as both nonlinear elements to mediate photon–photon interactions and as highly coherent single-photon sources, offer a highly promising route to realize such networks. A key requirement for the scale-up of the waveguide architecture is local control and tunability of individual quantum emitters. Here, we demonstrate electrical control, tuning, and switching of the nonlinear photon–photon interaction arising due to a quantum dot embedded in a single-mode nano-photonic waveguide. A power-dependent waveguide transmission extinction as large as 40 2% is observed on resonance. Photon statistics measurements show clear, voltage-controlled bunching of the transmitted light and antibunching of the reflected light, demonstrating the single-photon, quantum character of the nonlinearity. Importantly, the same architecture is also shown to act as a source of highly coherent, electrically tunable single photons. Overall, the platform presented addresses the essential requirements for the implementation of photonic gates for scalable nano-photonic-based quantum information processing.


Hallett, D., Foster, A. P., Hurst, D. L., Royall, B., Kok, P., Clarke, E., …Wilson, L. R. (2018). Electrical control of nonlinear quantum optics in a nano-photonic waveguide. Optica, 5(5), 644-650.

Journal Article Type Article
Acceptance Date Apr 6, 2018
Online Publication Date May 16, 2018
Publication Date May 20, 2018
Deposit Date Jun 12, 2018
Publicly Available Date Jun 13, 2018
Journal Optica
Print ISSN 2334-2536
Publisher Optica
Peer Reviewed Peer Reviewed
Volume 5
Issue 5
Pages 644-650
Public URL
Publisher URL


Article (1.3 Mb)

Copyright Statement
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

You might also like

Downloadable Citations