Skip to main content

Research Repository

Advanced Search

All Outputs (15)

Species-specific impact of microplastics on coral physiology (2020)
Journal Article
Mendrik, F., Henry, T., Burdett, H., Hackney, C., Waller, C., Parsons, D., & Hennige, S. (2021). Species-specific impact of microplastics on coral physiology. Environmental pollution, 269, Article 116238. https://doi.org/10.1016/j.envpol.2020.116238

There is evidence that microplastic (MP) pollution can negatively influence coral health; however, mechanisms are unknown and most studies have used MP exposure concentrations that are considerably higher than current environmental conditions. Furthe... Read More about Species-specific impact of microplastics on coral physiology.

Impact of dams and climate change on suspended sediment flux to the Mekong delta (2020)
Journal Article
Bussi, G., Darby, S. E., Whitehead, P. G., Jin, L., Dadson, S. J., Voepel, H. E., Vasilopoulos, G., Hackney, C. R., Hutton, C., Berchoux, T., Parsons, D. R., & Nicholas, A. (2021). Impact of dams and climate change on suspended sediment flux to the Mekong delta. The Science of the total environment, 755(1), Article 142468. https://doi.org/10.1016/j.scitotenv.2020.142468

The livelihoods of millions of people living in the world's deltas are deeply interconnected with the sediment dynamics of these deltas. In particular a sustainable supply of fluvial sediments from upstream is critical for ensuring the fertility of d... Read More about Impact of dams and climate change on suspended sediment flux to the Mekong delta.

Propagation of aerated pyroclastic density current analogues : flow behaviour and the formation of bedforms and deposits (2020)
Thesis
Smith, G. M. (2020). Propagation of aerated pyroclastic density current analogues : flow behaviour and the formation of bedforms and deposits. (Thesis). University of Hull. Retrieved from https://hull-repository.worktribe.com/output/4223270

Pyroclastic Density Currents (PDCs) are deadly volcanic phenomena which pose an active risk to millions of people. Particularly dangerous due to their great unpredictability, despite decades of study the internal physics of PDCs are still poorly unde... Read More about Propagation of aerated pyroclastic density current analogues : flow behaviour and the formation of bedforms and deposits.

Author Correction: Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (Nature Communications, (2020), 11, 1, (3129), 10.1038/s41467-020-16861-x) (2020)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Lintern, D. G., Stacey, C., Parsons, D. R., Simmons, S. M., Chen, Y., Sumner, E. J., Dix, J. K., & Clarke, J. E. (2020). Author Correction: Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (Nature Communications, (2020), 11, 1, (3129), 10.1038/s41467-020-16861-x). Nature communications, 11(1), Article 4425. https://doi.org/10.1038/s41467-020-18394-9

© 2020, The Author(s). The original version of this Article contained an error in the labelling of the cross-section in Fig. 2g and the vertical axis in Fig. 2b. This has been corrected in both the PDF and HTML versions of the Article.

Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (2020)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J. B., Talling, P. J., Hage, S., Lintern, D. G., Stacey, C., Parsons, D. R., Simmons, S. M., Chen, Y., Sumner, E. J., Dix, J. K., & Hughes Clarke, J. E. (2020). Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nature communications, 11(1), Article 3129. https://doi.org/10.1038/s41467-020-16861-x

Submarine channels are the primary conduits for terrestrial sediment, organic carbon, and pollutant transport to the deep sea. Submarine channels are far more difficult to monitor than rivers, and thus less well understood. Here we present 9 years of... Read More about Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution.

A bedform phase diagram for dense granular currents (2020)
Journal Article
Smith, G., Rowley, P., Williams, R., Giordano, G., Trolese, M., Silleni, A., Parsons, D. R., & Capon, S. (2020). A bedform phase diagram for dense granular currents. Nature communications, 11(1), Article 2873. https://doi.org/10.1038/s41467-020-16657-z

Pyroclastic density currents (PDCs) are a life-threatening volcanic hazard. Our understanding and hazard assessments of these flows rely on interpretations of their deposits. The occurrence of stratified layers, cross-stratification, and bedforms in... Read More about A bedform phase diagram for dense granular currents.

Asymmetric effects of a modelled tidal turbine on the flow and seabed (2020)
Journal Article
Ramírez -Mendoza, R., Murdoch, L., Jordan, L. B., Amoudry, L. O., McLelland, S., Cooke, R. D., Thorne, P., Simmons, S. M., Parsons, D., & Vezza, M. (2020). Asymmetric effects of a modelled tidal turbine on the flow and seabed. Renewable energy, 159, 238-249. https://doi.org/10.1016/j.renene.2020.05.133

The extraction of power from the flow of water has become an important potential source of clean energy. In spite of significant interest in the interaction between energy extraction devices and water currents, comparatively little work has focused o... Read More about Asymmetric effects of a modelled tidal turbine on the flow and seabed.

Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits (2020)
Journal Article
Hage, S., Galy, V. V., Cartigny, M. J., Acikalin, S., Clare, M. A., Gröcke, D. R., Hilton, R. G., Hunt, J. E., Lintern, D. G., McGhee, C. A., Parsons, D. R., Stacey, C. D., Sumner, E. J., & Talling, P. J. (2020). Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits. Geology, 48(9), 882-887. https://doi.org/10.1130/G47320.1

Burial of terrestrial biospheric particulate organic carbon in marine sediments removes CO2 from the atmosphere, regulating climate over geologic time scales. Rivers deliver terrestrial organic carbon to the sea, while turbidity currents transport ri... Read More about Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits.

Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems (2020)
Journal Article
Hope, J. A., Malarkey, J., Baas, J. H., Peakall, J., Parsons, D. R., Manning, A. J., Bass, S. J., Lichtman, I. D., Thorne, P. D., Ye, L., & Paterson, D. M. (2020). Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems. Limnology and Oceanography, 65(10), 2403-2419. https://doi.org/10.1002/lno.11461

This study focuses on the interactions between sediment stability and biological and physical variables that influence the erodibility across different habitats. Sampling at short-term temporal scales illustrated the persistence of the microphytobent... Read More about Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems.

Direct evidence of a high-concentration basal layer in a submarine turbidity current (2020)
Journal Article
Maier, K. L., Paull, C. K., Cartigny, M. J., Simmons, S. M., Talling, P. J., Wang, Z., Xu, J., Talling, P. J., Cartigny, M. J. B., Simmons, S. M., Gwiazda, R., Paull, C. K., Maier, K. L., & Parsons, D. R. (in press). Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep Sea Research Part I: Oceanographic Research Papers, Article 103300. https://doi.org/10.1016/j.dsr.2020.103300

Submarine turbidity currents are one of the most important sediment transfer processes on earth. Yet the fundamental nature of turbidity currents is still debated; especially whether they are entirely dilute and turbulent, or a thin and dense basal l... Read More about Direct evidence of a high-concentration basal layer in a submarine turbidity current.

Drainage and erosion of Cambodia's Great Lake in the middle-late Holocene: the combined role of climatic drying, base-level fall and river capture (2020)
Journal Article
Darby, S. E., Langdon, P. G., Best, J. L., Leyland, J., Hackney, C., Marti, M., Morgan, P. R., Ben, S., Aalto, R., Parsons, D. R., Nicholas, A. P., & Leng, M. J. (2020). Drainage and erosion of Cambodia's Great Lake in the middle-late Holocene: the combined role of climatic drying, base-level fall and river capture. Quaternary science reviews, 236, Article 106265. https://doi.org/10.1016/j.quascirev.2020.106265

We provide evidence for a large-scale geomorphic event in Cambodia’s great lake, the Tonlé Sap, during the middle Holocene. The present-day hydrology of the basin is dominated by an annual flood pulse where water from the Mekong River raises the lake... Read More about Drainage and erosion of Cambodia's Great Lake in the middle-late Holocene: the combined role of climatic drying, base-level fall and river capture.

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S. M., Azpiroz-Zabala, M., Cartigny, M. J. B., Clare, M. A., Cooper, C., Parsons, D. R., Pope, E. L., Sumner, E. J., & Talling, P. J. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), Article e2019JC015904. https://doi.org/10.1029/2019JC015904

Turbidity currents transport prodigious volumes of sediment to the deep-sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.

Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis (2020)
Journal Article
Chapman, E., Bonsor, B., Parsons, D. R., & Rotchell, J. (2020). Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis. Marine environmental research, 159, Article 104960. https://doi.org/10.1016/j.marenvres.2020.104960

Clock genes and environmental cues regulate essential biological rhythms. The blue mussel, Mytilus edulis, is an ecologically and economically important intertidal bivalve undergoing seasonal reproductive rhythms. We previously identified seasonal... Read More about Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis.

Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape (2020)
Journal Article
Cisneros, J., Best, J., van Dijk, T., Almeida, R. P. D., Amsler, M., Boldt, J., Freitas, B., Galeazzi, C., Huizinga, R., Ianniruberto, M., Ma, H., Nittrouer, J. A., Oberg, K., Orfeo, O., Parsons, D., Szupiany, R., Wang, P., & Zhang, Y. (2020). Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape. Nature Geoscience, 13(2), 156-162. https://doi.org/10.1038/s41561-019-0511-7

Dunes are present in all the worlds’ big rivers and form critical agents of bedload transport, constitute appreciable sources of bed roughness and flow resistance, and generate stratification that is the most common depositional element of ancient al... Read More about Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape.

River bank instability from unsustainable sand mining in the lower Mekong River (2020)
Journal Article
Hackney, C. R., Darby, S., Parsons, D. R., Leyland, J., Best, J., Aalto, R., Nicholas, A., & Houseago, R. (2020). River bank instability from unsustainable sand mining in the lower Mekong River. Nature Sustainability, 3(3), 217-225. https://doi.org/10.1038/s41893-019-0455-3

Recent growth of the construction industry has fuelled demand for sand, with considerable volumes being extracted from the world’s large rivers. Sediment transport from upstream naturally replenishes sediment stored in river beds, but the absence of... Read More about River bank instability from unsustainable sand mining in the lower Mekong River.