Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro (2021)
Journal Article
Collins, T., Pyne, E., Christensen, M., Iles, A., Pamme, N., & Pires, I. M. (2021). Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro. Biomicrofluidics, 15(4), Article 044103. https://doi.org/10.1063/5.0061373

The majority of cancer deaths are linked to tumor spread, or metastasis, but 3D in vitro metastasis models relevant to the tumor microenvironment (including interstitial fluid flow) remain an area of unmet need. Microfluidics allows us to introduce c... Read More about Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro.

Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices (2021)
Journal Article
Christensen, M. G., Cawthorne, C., Dyer, C. E., Greenman, J., & Pamme, N. (2021). Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices. Microfluidics and Nanofluidics, 25(4), Article 35. https://doi.org/10.1007/s10404-021-02434-x

Microfluidic ‘organ-on-a-chip’ devices hold great potential for better mimicking the continuous flow microenvironment experienced by tissue and cells in vivo, thereby ensuring realistic transport of nutrients and elimination of waste products. Howeve... Read More about Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices.