Skip to main content

Research Repository

Advanced Search

All Outputs (29)

User Engagement Triggers in Social Media Discourse on Biodiversity Conservation (2024)
Journal Article
Dethlefs, N., & Cuayáhuitl, H. (online). User Engagement Triggers in Social Media Discourse on Biodiversity Conservation. ACM Transactions on Social Computing, https://doi.org/10.1145/3662685

Studies in digital conservation have increasingly used social media in recent years as a source of data to understand the interactions between humans and nature, model and monitor biodiversity, and analyse online discourse about the conservation of s... Read More about User Engagement Triggers in Social Media Discourse on Biodiversity Conservation.

Redefining Digital Twins - A Wind Energy Operations and Maintenance Perspective (2024)
Presentation / Conference Contribution
Tuton, E., Ma, X., & Dethlefs, N. (2024, May). Redefining Digital Twins - A Wind Energy Operations and Maintenance Perspective. Presented at The Science of Making Torque from Wind (TORQUE 2024), Florence, Italy

Digital Twin (DT) technology has seen an explosion in popularity, with wind energy no exception. This is particularly true for Operations & Maintenance (O&M) applications. However, this expanded use has been accompanied by loose, conflicting, definit... Read More about Redefining Digital Twins - A Wind Energy Operations and Maintenance Perspective.

Safety Monitoring for Large Language Models: A Case Study of Offshore Wind Maintenance (2023)
Presentation / Conference Contribution
Walker, C., Rothon, C., Aslansefat, K., Papadopoulos, Y., & Dethlefs, N. (2024, February). Safety Monitoring for Large Language Models: A Case Study of Offshore Wind Maintenance. Presented at Safety Critical Systems Symposium SSS'24, Bristol, UK

It has been forecasted that a quarter of the world's energy usage will be supplied from Offshore Wind (OSW) by 2050 (Smith 2023). Given that up to one third of Levelised Cost of Energy (LCOE) arises from Operations and Maintenance (O&M), the motive f... Read More about Safety Monitoring for Large Language Models: A Case Study of Offshore Wind Maintenance.

Intelligent digital twin - machine learning system for real-time wind turbine wind speed and power generation forecasting (2023)
Presentation / Conference Contribution
Tuton, E., Ma, X., & Dethlefs, N. (2023, August). Intelligent digital twin - machine learning system for real-time wind turbine wind speed and power generation forecasting. Presented at The 6th International Conference on Renewable Energy and Environment Engineering REEE 2023, Brest , France

Wind power is a key pillar in efforts to decarbonise energy production. However, variability in wind speed and resultant wind turbine power generation poses a challenge for power grid integration. Digital Twin (DT) technology provides intelligent ser... Read More about Intelligent digital twin - machine learning system for real-time wind turbine wind speed and power generation forecasting.

Real-time social media sentiment analysis for rapid impact assessment of floods (2023)
Journal Article
Bryan-Smith, L., Godsall, J., George, F., Egode, K., Dethlefs, N., & Parsons, D. (2023). Real-time social media sentiment analysis for rapid impact assessment of floods. Computers & geosciences, 178, Article 105405. https://doi.org/10.1016/j.cageo.2023.105405

Traditional approaches to flood modelling mostly rely on hydrodynamic physical simulations. While these simulations can be accurate, they are computationally expensive and prohibitively so when thinking about real-time prediction based on dynamic env... Read More about Real-time social media sentiment analysis for rapid impact assessment of floods.

Domain-invariant icing detection on wind turbine rotor blades with generative artificial intelligence for deep transfer learning (2023)
Journal Article
Chatterjee, J., Alvela Nieto, M. T., Gelbhardt, H., Dethlefs, N., Ohlendorf, J.-H., Greulich, A., & Thoben, K.-D. (2023). Domain-invariant icing detection on wind turbine rotor blades with generative artificial intelligence for deep transfer learning. Environmental Data Science, 2, 1-15. https://doi.org/10.1017/eds.2023.9

Wind energy’s ability to liberate the world from conventional sources of energy relies on lowering the significant costs associated with the maintenance of wind turbines. Since icing events on turbine rotor blades are a leading cause of operational f... Read More about Domain-invariant icing detection on wind turbine rotor blades with generative artificial intelligence for deep transfer learning.

This new conversational AI model can be your friend, philosopher, and guide ... and even your worst enemy (2023)
Journal Article
Chatterjee, J., & Dethlefs, N. (2023). This new conversational AI model can be your friend, philosopher, and guide ... and even your worst enemy. Patterns, 4(1), Article 100676. https://doi.org/10.1016/j.patter.2022.100676

We explore the recently released ChatGPT model, one of the most powerful conversational AI models that has ever been developed. This opinion provides a perspective on its strengths and weaknesses and a call to action for the AI community (including a... Read More about This new conversational AI model can be your friend, philosopher, and guide ... and even your worst enemy.

Deep learning for the early detection of harmful algal blooms and improving water quality monitoring (2022)
Thesis
Dagtekin, O. Deep learning for the early detection of harmful algal blooms and improving water quality monitoring. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4220252

Climate change will affect how water sources are managed and monitored. The frequency of algal blooms will increase with climate change as it presents favourable conditions for the reproduction of phytoplankton. During monitoring, possible sensory fa... Read More about Deep learning for the early detection of harmful algal blooms and improving water quality monitoring.

Automated Question-Answering for Interactive Decision Support in Operations & Maintenance of Wind Turbines (2022)
Journal Article
Chatterjee, J., & Dethlefs, N. (2022). Automated Question-Answering for Interactive Decision Support in Operations & Maintenance of Wind Turbines. IEEE Access, 10, 84710-84737. https://doi.org/10.1109/ACCESS.2022.3197167

Intelligent question-answering (QA) systems have witnessed increased interest in recent years, particularly in their ability to facilitate information access, data interpretation or decision support. The wind energy sector is one of the most promisin... Read More about Automated Question-Answering for Interactive Decision Support in Operations & Maintenance of Wind Turbines.

Facilitating a smoother transition to renewable energy with AI (2022)
Journal Article
Chatterjee, J., & Dethlefs, N. (2022). Facilitating a smoother transition to renewable energy with AI. Patterns, 3(6), Article 100528. https://doi.org/10.1016/j.patter.2022.100528

Artificial intelligence (AI) can help facilitate wider adoption of renewable energy globally. We organized a social event for the AI and renewables community to discuss these aspects at the International Conference on Learning Representations (ICLR),... Read More about Facilitating a smoother transition to renewable energy with AI.

A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms (2022)
Journal Article
Walker, C., Rothon, C., Aslansefat, K., Papadopoulos, Y., & Dethlefs, N. (2022). A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms. Lecture notes in computer science, 13525 LNCS, 189-203. https://doi.org/10.1007/978-3-031-15842-1_14

With an increasing emphasis on driving down the costs of Operations and Maintenance (O &M) in the Offshore Wind (OSW) sector, comes the requirement to explore new methodology and applications of Deep Learning (DL) to the domain. Condition-based monit... Read More about A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms.

The blessings of explainable AI in operations & maintenance of wind turbines (2021)
Thesis
Chatterjee, J. The blessings of explainable AI in operations & maintenance of wind turbines. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4223982

Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM)... Read More about The blessings of explainable AI in operations & maintenance of wind turbines.

Deep learning with knowledge graphs for fine-grained emotion classification in text (2021)
Thesis
Schoene, A. M. Deep learning with knowledge graphs for fine-grained emotion classification in text. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4223160

This PhD thesis investigates two key challenges in the area of fine-grained emotion detection in textual data. More specifically, this work focuses on (i) the accurate classification of emotion in tweets and (ii) improving the learning of representat... Read More about Deep learning with knowledge graphs for fine-grained emotion classification in text.

Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future (2021)
Journal Article
Chatterjee, J., & Dethlefs, N. (2021). Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future. Renewable & sustainable energy reviews, 144, Article 111051. https://doi.org/10.1016/j.rser.2021.111051

Wind energy has emerged as a highly promising source of renewable energy in recent times. However, wind turbines regularly suffer from operational inconsistencies, leading to significant costs and challenges in operations and maintenance (O&M). Condi... Read More about Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future.

XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision Support in Operations & Maintenance of Wind Turbines (2021)
Journal Article
Chatterjee, J., & Dethlefs, N. XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision Support in Operations & Maintenance of Wind Turbines. https://doi.org/10.48550/arXiv.2012.10489. Manuscript submitted for publication

Condition-based monitoring (CBM) has been widely utilised in the wind industry for monitoring operational inconsistencies and failures in turbines, with techniques ranging from signal processing and vibration analysis to artificial intelligence (AI)... Read More about XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision Support in Operations & Maintenance of Wind Turbines.

Hierarchical Multiscale Recurrent Neural Networks for Detecting Suicide Notes (2021)
Journal Article
Schoene, A. M., Turner, A. P., De Mel, G., & Dethlefs, N. (in press). Hierarchical Multiscale Recurrent Neural Networks for Detecting Suicide Notes. IEEE Transactions on Affective Computing, https://doi.org/10.1109/TAFFC.2021.3057105

Recent statistics in suicide prevention show that people are increasingly posting their last words online and with the unprecedented availability of textual data from social media platforms researchers have the opportunity to analyse such data. Furth... Read More about Hierarchical Multiscale Recurrent Neural Networks for Detecting Suicide Notes.

A divide-and-conquer approach to neural natural language generation from structured data (2021)
Journal Article
Dethlefs, N., Schoene, A., & Cuayáhuitl, H. (2021). A divide-and-conquer approach to neural natural language generation from structured data. Neurocomputing, 433, 300-309. https://doi.org/10.1016/j.neucom.2020.12.083

Current approaches that generate text from linked data for complex real-world domains can face problems including rich and sparse vocabularies as well as learning from examples of long varied sequences. In this article, we propose a novel divide-and-... Read More about A divide-and-conquer approach to neural natural language generation from structured data.

Deep reinforcement learning for maintenance planning of offshore vessel transfer (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. (2020, October). Deep reinforcement learning for maintenance planning of offshore vessel transfer. Presented at 4th International Conference on Renewable Energies Offshore (RENEW 2020), Lisbon, Portugal

Offshore wind farm operators need to make short-term decisions on planning vessel transfers to turbines for preventive or corrective maintenance. These decisions can play a pivotal role in ensuring maintenance actions are carried out in a timely and... Read More about Deep reinforcement learning for maintenance planning of offshore vessel transfer.

A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. (2020, July). A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines. Presented at 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK

© 2020 IEEE. Wind energy is one of the fastest-growing sustainable energy sources in the world but relies crucially on efficient and effective operations and maintenance to generate sufficient amounts of energy and reduce downtime of wind turbines an... Read More about A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines.

Temporal Causal Inference in Wind Turbine SCADA Data Using Deep Learning for Explainable AI (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. Temporal Causal Inference in Wind Turbine SCADA Data Using Deep Learning for Explainable AI. Presented at The Science of Making Torque from Wind (TORQUE 2020), Online, Netherlands

© 2020 Published under licence by IOP Publishing Ltd. Machine learning techniques have been widely used for condition-based monitoring of wind turbines using Supervisory Control & Acquisition (SCADA) data. However, many machine learning models, inclu... Read More about Temporal Causal Inference in Wind Turbine SCADA Data Using Deep Learning for Explainable AI.