Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Revealing in situ stress-induced short- and medium-range atomic structure evolution in a multicomponent metallic glassy alloy (2024)
Journal Article
Luo, S., Khong, J. C., Huang, S., Yang, G., & Mi, J. (2024). Revealing in situ stress-induced short- and medium-range atomic structure evolution in a multicomponent metallic glassy alloy. Acta Materialia, 272, Article 119917. https://doi.org/10.1016/j.actamat.2024.119917

Deformation behaviour of multicomponent metallic glasses are determined by the evolution/reconfiguration of the short- and medium-range order (SRO and MRO) atomic structures. A precise understanding of how different atom species rearrange themselves... Read More about Revealing in situ stress-induced short- and medium-range atomic structure evolution in a multicomponent metallic glassy alloy.

Synchrotron x-ray total scattering and modeling study of high-pressure-induced inhomogeneous atom reconfiguration in an equiatomic Zr50Cu50 metallic glassy alloy (2022)
Journal Article
Luo, S., Khong, J. C., Daisenberger, D., Huang, S., McMillan, P. F., & Mi, J. (2022). Synchrotron x-ray total scattering and modeling study of high-pressure-induced inhomogeneous atom reconfiguration in an equiatomic Zr50Cu50 metallic glassy alloy. Physical Review B, 105(6), Article 064203. https://doi.org/10.1103/PhysRevB.105.064203

We studied in situ the local atomic structure evolution of an equiatomic Zr50Cu50 metallic glassy alloy under high pressure compression inside a diamond anvil cell using synchrotron x-ray total scattering. The empirical potential structure refinement... Read More about Synchrotron x-ray total scattering and modeling study of high-pressure-induced inhomogeneous atom reconfiguration in an equiatomic Zr50Cu50 metallic glassy alloy.

3D local atomic structure evolution in a solidifying Al-0.4Sc dilute alloy melt revealed in operando by synchrotron X-ray total scattering and modelling (2022)
Journal Article
Huang, S., Luo, S., Qin, L., Shu, D., Sun, B., Lunt, A. J. G., Korsunsky, A. M., & Mi, J. (2022). 3D local atomic structure evolution in a solidifying Al-0.4Sc dilute alloy melt revealed in operando by synchrotron X-ray total scattering and modelling. Scripta materialia, 211, Article 114484. https://doi.org/10.1016/j.scriptamat.2021.114484

Using synchrotron X-ray total scattering and empirical potential structure refinement modelling, we studied systematically in operando condition the disorder-to-order local atomic structure transition in a pure Al and a dilute Al-0.4Sc alloy melt in... Read More about 3D local atomic structure evolution in a solidifying Al-0.4Sc dilute alloy melt revealed in operando by synchrotron X-ray total scattering and modelling.

Multiscale characterization of the 3D network structure of metal carbides in a Ni superalloy by synchrotron X-ray microtomography and ptychography (2020)
Journal Article
Zhang, Z., Khong, J. C., Koe, B., Luo, S., Huang, S., Qin, L., Cipiccia, S., Batey, D., Bodey, A. J., Rau, C., Chiu, Y. L., Zhang, Z., Gebelin, J. C., Green, N., & Mi, J. (2021). Multiscale characterization of the 3D network structure of metal carbides in a Ni superalloy by synchrotron X-ray microtomography and ptychography. Scripta materialia, 193, 71-76. https://doi.org/10.1016/j.scriptamat.2020.10.032

Synchrotron X-ray microtomography and ptychography were used to characterize the 3D network structure, morphology and distribution of metal carbides in an as-cast IN713LC Ni superalloy. MC typed carbides were found to distribute mainly on the grain b... Read More about Multiscale characterization of the 3D network structure of metal carbides in a Ni superalloy by synchrotron X-ray microtomography and ptychography.

In-situ multiscale shear failure of a bistable composite tape-spring (2020)
Journal Article
Wang, B., Seffen, K. A., Guest, S. D., Lee, T. L., Huang, S., Luo, S., & Mi, J. (2020). In-situ multiscale shear failure of a bistable composite tape-spring. Composites Science and Technology, 200, Article 108348. https://doi.org/10.1016/j.compscitech.2020.108348

A bistable composite tape-spring (CTS) is stable in both the extended and coiled configurations, with fibres oriented at ±45°. It is light weight and multifunctional, and has attracted growing interest in shape-adaptive and energy harvesting systems... Read More about In-situ multiscale shear failure of a bistable composite tape-spring.