Skip to main content

Research Repository

Advanced Search

All Outputs (11)

Self-Assembly of Colloidal Particles at Fluid Interfaces into Complex 2D Structures (2025)
Thesis
Eatson, J. (2025). Self-Assembly of Colloidal Particles at Fluid Interfaces into Complex 2D Structures. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/5179536

Colloidal particles are used to stabilise multiphase liquids by adsorbing to liquid interfaces, but they also serve as model systems for studying self-assembly in two-dimensions. The rich variety of interactions at liquid interfaces, e.g., electrosta... Read More about Self-Assembly of Colloidal Particles at Fluid Interfaces into Complex 2D Structures.

Capillary assembly of anisotropic nanoparticles at cylindrical fluid interfaces in the immersion regime (2025)
Journal Article
Eatson, J. L., Stephenson, B. T., Gordon, J. R., Horozov, T. S., & Buzza, D. M. A. (in press). Capillary assembly of anisotropic nanoparticles at cylindrical fluid interfaces in the immersion regime. Acta Mechanica, https://doi.org/10.1007/s00707-024-04206-4

The unique behaviour of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. In particular, the deformable nature of liquid interfaces means that we can use inter... Read More about Capillary assembly of anisotropic nanoparticles at cylindrical fluid interfaces in the immersion regime.

Programmable 2D materials through shape-controlled capillary forces (2024)
Journal Article
Eatson, J., Morgan, S., Horozov, T. S., & Buzza, M. D. (2024). Programmable 2D materials through shape-controlled capillary forces. Proceedings of the National Academy of Sciences of the United States of America, 121(35), Article e2401134121. https://doi.org/10.1073/pnas.2401134121

In recent years, self-assembly has emerged as a powerful tool for fabricating functional materials. Since self-assembly is fundamentally determined by the particle interactions in the system, if we can gain full control over these interactions, it wo... Read More about Programmable 2D materials through shape-controlled capillary forces.

Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces (2023)
Journal Article
Eatson, J. L., Gordon, J. R., Cegielski, P., Giesecke, A. L., Suckow, S., Rao, A., Silvestre, O. F., Liz-Marzán, L. M., Horozov, T. S., & Buzza, D. M. A. (2023). Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces. Langmuir : the ACS journal of surfaces and colloids, 39(17), 6006–6017. https://doi.org/10.1021/acs.langmuir.3c00016

The unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial... Read More about Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces.

Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications (2022)
Journal Article
Morgan, S. O., Muravitskaya, A., Lowe, C., Adawi, A. M., Bouillard, J. G., Horozov, T. S., Stasiuk, G. J., & Buzza, D. M. (2022). Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications. Physical chemistry chemical physics : PCCP, 24, 11000-11013. https://doi.org/10.1039/d1cp05484h

Vertically aligned monolayers of metallic nanorods have a wide range of applications as metamaterials or in surface enhanced Raman spectroscopy. However the fabrication of such structures using current top-down methods or through assembly on solid su... Read More about Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications.

Adsorption trajectories of nonspherical particles at liquid interfaces (2021)
Journal Article
Buzza, D. M. A., Stasiuk, G. J., Horozov, T. S., Adawi, A. M., Bouillard, J.-S. G., Lowe, C., Fox, J., & Morgan, S. O. (2021). Adsorption trajectories of nonspherical particles at liquid interfaces. Physical Review E, 103(4), Article 042604. https://doi.org/10.1103/PhysRevE.103.042604

The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dy... Read More about Adsorption trajectories of nonspherical particles at liquid interfaces.

Density functional theory for the crystallization of two-dimensional dipolar colloidal alloys (2018)
Journal Article
Somerville, W. R., Stokes, J. L., Adawi, A. M., Horozov, T. S., Archer, A. J., & Buzza, D. M. (2018). Density functional theory for the crystallization of two-dimensional dipolar colloidal alloys. Journal of Physics: Condensed Matter, 30(40), https://doi.org/10.1088/1361-648X/aaddc9

Two-dimensional mixtures of dipolar colloidal particles with different dipole moments exhibit extremely rich self-assembly behaviour and are relevant to a wide range of experimental systems, including charged and super-paramagnetic colloids at liquid... Read More about Density functional theory for the crystallization of two-dimensional dipolar colloidal alloys.

Self-assembly of two-dimensional colloidal clusters by tuning the hydrophobicity, composition, and packing geometry (2013)
Journal Article
Law, A. D., Auriol, M., Smith, D., Horozov, T. S., & Buzza, D. M. A. (2013). Self-assembly of two-dimensional colloidal clusters by tuning the hydrophobicity, composition, and packing geometry. Physical review letters, 110(13), 0 - 0. https://doi.org/10.1103/physrevlett.110.138301

We study the structure of binary monolayers of large (3 m diameter) very hydrophobic (A) and large (3 m diameter) hydrophilic (B) or small (1 m diameter) hydrophilic (C) silica particles at an octanewater interface. By tuning the composition and pack... Read More about Self-assembly of two-dimensional colloidal clusters by tuning the hydrophobicity, composition, and packing geometry.

The structure and melting transition of two-dimensional colloidal alloys (2011)
Journal Article
Law, A. D., Horozov, T. S., & Buzza, D. M. A. (2011). The structure and melting transition of two-dimensional colloidal alloys. Soft matter, 7(19), 8923-8931. https://doi.org/10.1039/c1sm05446e

We study theoretically the structure and melting transition of two-dimensional (2D) binary mixtures of colloidal particles interacting via a dipole-dipole potential. Using a lattice sum method, we find that at zero temperature (T = 0) the system form... Read More about The structure and melting transition of two-dimensional colloidal alloys.

Two-dimensional colloidal alloys (2011)
Journal Article
Law, A. D., Buzza, D. M. A., & Horozov, T. S. (2011). Two-dimensional colloidal alloys. Physical review letters, 106(12), Article ARTN 128302. https://doi.org/10.1103/physrevlett.106.128302

We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-d... Read More about Two-dimensional colloidal alloys.