Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Process design and life cycle assessment of furfural and glucose co-production derived from palm oil empty fruit bunches (2022)
Journal Article
Ng, Z. W., Gan, H. X., Putranto, A., Akbar Rhamdhani, M., Zein, S. H., George, O. A., Giwangkara, J., & Butar, I. (2022). Process design and life cycle assessment of furfural and glucose co-production derived from palm oil empty fruit bunches. Environment, Development and Sustainability, https://doi.org/10.1007/s10668-022-02633-8

In light of environmental issues, lignocellulosic empty fruit bunch (EFB) biomass is promoted as a carbon–neutral, environmentally friendly, and renewable alternative feedstock. A comprehensive environmental assessment of EFB biorefineries is critica... Read More about Process design and life cycle assessment of furfural and glucose co-production derived from palm oil empty fruit bunches.

Techno-Economic Analysis and Feasibility of Industrial-Scale Activated Carbon Production from Agricultural Pea Waste Using Microwave-Assisted Pyrolysis: A Circular Economy Approach (2022)
Journal Article
Zein, S. H., & Antony, A. (2022). Techno-Economic Analysis and Feasibility of Industrial-Scale Activated Carbon Production from Agricultural Pea Waste Using Microwave-Assisted Pyrolysis: A Circular Economy Approach. Processes, 10(9), Article 1702. https://doi.org/10.3390/pr10091702

This paper examines a novel approach to activated carbon (AC) production that uses pea waste (PW) and to what extent it is economically competitive with current production methods. Additionally, the outcome is to provide a detailed economic analysis... Read More about Techno-Economic Analysis and Feasibility of Industrial-Scale Activated Carbon Production from Agricultural Pea Waste Using Microwave-Assisted Pyrolysis: A Circular Economy Approach.

Pyrolysis of High-Density Polyethylene Waste Plastic to Liquid Fuels—Modelling and Economic Analysis (2022)
Journal Article
Zein, S. H., Grogan, C. T., Yansaneh, O. Y., & Putranto, A. (2022). Pyrolysis of High-Density Polyethylene Waste Plastic to Liquid Fuels—Modelling and Economic Analysis. Processes, 10(8), Article 1503. https://doi.org/10.3390/pr10081503

Recycling of waste plastics has become vital due to the threat to the environment the huge piles of those wastes represent, with research revealing High-Density Polyethylene (HDPEs) as the most dominant waste plastics. Because of their dominance and... Read More about Pyrolysis of High-Density Polyethylene Waste Plastic to Liquid Fuels—Modelling and Economic Analysis.