Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary (2024)
Journal Article
Varley, T. S., Lawrence, N. S., & Wadhawan, J. D. (online). Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary. Journal of Solid State Electrochemistry, https://doi.org/10.1007/s10008-024-05932-4

Contact angles of liquid, spherical cap droplets immobilised on an electrode surface and bathed by a fluid are important, quantifiable measures of the liquid/fluid interfacial tension. Optical goniometry, even if computer assisted, suffers when the c... Read More about Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary.

Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels (2024)
Journal Article
Taylor, M. J., Hornsby, K., Cheah, K. W., Hurst, P., Walker, S., & Skoulou, V. (2024). Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels. Sustainable Chemistry for the Environment, 7, Article 100123. https://doi.org/10.1016/j.scenv.2024.100123

Value added lignin rich waste sludges from biorefinery processes are, as yet untapped valuable feedstocks that can be reformed into clean, high quality solid fuels. By water washing sludges produced from base hydrolyzed waste, a material stripped of... Read More about Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels.

Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance (2024)
Journal Article
Kashyap, R., Chauhan, A., Kaur, G., Chaudhary, G. R., Taylor, M. J., & Sharma, R. K. (2024). Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance. Physica B: Condensed Matter, 688, Article 416150. https://doi.org/10.1016/j.physb.2024.416150

The hydroelectric cell (HEC) produces green power at room temperature using non-photocatalytic water splitting. To achieve this goal, pure Ni (Nickel) and lithium (Li) substituted in cobalt oxide (Co3O4), a mesoporous oxygen-deficient material, is in... Read More about Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance.

Woody biomass waste derivatives in decarbonised blast furnace ironmaking process (2024)
Journal Article
Wang, R. Q., Jiang, L., Wang, Y. D., Font-Palma, C., Skoulou, V., & Roskilly, A. P. (2024). Woody biomass waste derivatives in decarbonised blast furnace ironmaking process. Renewable & sustainable energy reviews, 199, Article 114465. https://doi.org/10.1016/j.rser.2024.114465

Modern ironmaking process relies significantly on fossil-related fuels, which ultimately results in the enormous CO2 emitted into the atmosphere. Biomass of plant origin, as a carbon-neutral energy source, has been considered as an alternative to fos... Read More about Woody biomass waste derivatives in decarbonised blast furnace ironmaking process.