Skip to main content

Research Repository

Advanced Search

Dr Amirpasha Moetazedian's Outputs (5)

Extra-wide deposition in extrusion additive manufacturing: A new convention for improved interlayer mechanical performance (2022)
Journal Article
Allum, J., Moetazedian, A., Gleadall, A., Mitchell, N., Marinopoulos, T., McAdam, I., Li, S., & Silberschmidt, V. V. (2023). Extra-wide deposition in extrusion additive manufacturing: A new convention for improved interlayer mechanical performance. Additive Manufacturing, 61, Article 103334. https://doi.org/10.1016/j.addma.2022.103334

Recent studies have contested long-standing assumptions that mechanical anisotropy is caused by weak interlayer bonding and demonstrated that microscale geometry (the groove between extruded filaments) is the major cause of anisotropy in extrusion ad... Read More about Extra-wide deposition in extrusion additive manufacturing: A new convention for improved interlayer mechanical performance.

Investigation on corner precision at different corner angles in material extrusion additive manufacturing: An experimental and computational fluid dynamics analysis (2022)
Presentation / Conference Contribution
Mollah, M. T., Moetazedian, A., Gleadall, A., Yan, J., Alphonso, W. E., Comminal, R., Šeta, B., Lock, T., & Spangenberg, J. (2022, July). Investigation on corner precision at different corner angles in material extrusion additive manufacturing: An experimental and computational fluid dynamics analysis. Presented at 2022 International Solid Freeform Fabrication Symposium, University of Texas at Austin

This paper investigates the influence of different corner angles on microscale geometry in material extrusion additive manufacturing. Polylactic acid (PLA) was 3D-printed with corner angles of 15°, 30°, 45°, 60°, 75°, 90°, and 135° using Bowden and D... Read More about Investigation on corner precision at different corner angles in material extrusion additive manufacturing: An experimental and computational fluid dynamics analysis.

Hydrolytic degradation of polylactide in extrusion additive manufacturing (2022)
Thesis
Moetazedian, A. Hydrolytic degradation of polylactide in extrusion additive manufacturing. (Thesis). Loughborough University. https://hull-repository.worktribe.com/output/4864755

The combined use of material extrusion additive manufacturing (MEAM) and biodegradable polymers such as polylactide (PLA) is one of the most versatile and valuable manufacturing strategies for biomedical applications. MEAM enables rapid production of... Read More about Hydrolytic degradation of polylactide in extrusion additive manufacturing.

CONVEX microfluidic devices: a new microscale agile manufacturing pipeline for material extrusion additive manufacturing (2022)
Preprint / Working Paper
Moetazedian, A., Nasrollahi, V., Candeo, A., Cox, L., Grover, L., & Poologasundarampillai, G. CONVEX microfluidic devices: a new microscale agile manufacturing pipeline for material extrusion additive manufacturing

This study is the first to report the fabrication of complex microfluidic devices based on CONtinuously Varied EXtrusion (CONVEX) of extruded filament in material extrusion additive manufacturing (MEAM). A range of complex geometries and channel widt... Read More about CONVEX microfluidic devices: a new microscale agile manufacturing pipeline for material extrusion additive manufacturing.

Fracture mechanisms of additively manufactured polylactide: Effect of in vitro hydrolytic degradation (2022)
Journal Article
Moetazedian, A., Gleadall, A., & V Silberschmidt, V. (2022). Fracture mechanisms of additively manufactured polylactide: Effect of in vitro hydrolytic degradation. Engineering Fracture Mechanics, 269, Article 108572. https://doi.org/10.1016/j.engfracmech.2022.108572

This is the first study considering the effect of in vitro hydrolytic degradation at 37 °C on fracture mechanism of the most important aspect of additive manufacturing – the interface between layers. Specimens were tested transversely (failure betwee... Read More about Fracture mechanisms of additively manufactured polylactide: Effect of in vitro hydrolytic degradation.