Professor Daniel Parsons
Morphodynamic Stickiness: the influence of physical and biological cohesion in sedimentary systems
People Involved
Ocean Acidification Amplifies the Olfactory Response to 2-Phenylethylamine: Altered Cue Reception as a Mechanistic Pathway? (2021)
Journal Article
Hardege, J. D., Schirrmacher, P., Roggatz, C. C., & Benoit, D. M. (in press). Ocean Acidification Amplifies the Olfactory Response to 2-Phenylethylamine: Altered Cue Reception as a Mechanistic Pathway?. Journal of Chemical Ecology, https://doi.org/10.1007/s10886-021-01276-9With carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to u... Read More about Ocean Acidification Amplifies the Olfactory Response to 2-Phenylethylamine: Altered Cue Reception as a Mechanistic Pathway?.
Saxitoxin and tetrodotoxin bioavailability increases in future oceans (2019)
Journal Article
Roggatz, C. C., Fletcher, N., Benoit, D. M., Algar, A. C., Doroff, A., Wright, B., Wollenberg Valero, K. C., & Hardege, J. D. (2019). Saxitoxin and tetrodotoxin bioavailability increases in future oceans. Nature Climate Change, 9(11), 840-844. https://doi.org/10.1038/s41558-019-0589-3© 2019, The Author(s), under exclusive licence to Springer Nature Limited. Increasing atmospheric CO2 levels are largely absorbed by the ocean, decreasing surface water pH1. In combination with increasing ocean temperatures, these changes have been i... Read More about Saxitoxin and tetrodotoxin bioavailability increases in future oceans.