Professor Brad Gibson
Astrophysics at the University of Hull
People Involved
Dr Marco Pignatari
Dr Elke Roediger E.Roediger@hull.ac.uk
Reader in Astrophysics, Director of the E.A. Milne Centre for Astrophysics
Dr David Benoit D.Benoit@hull.ac.uk
Senior Lecturer in Molecular Physics and Astrochemistry
Dr Siri Chongchitnan
Professor Kevin Pimbblet K.Pimbblet@hull.ac.uk
Director of DAIM
The NuGrid AGB Evolution and Nucleosynthesis Data Set (2022)
Journal Article
Battino, U., Pignatari, M., Tattersall, A., Denissenkov, P., & Herwig, F. (2022). The NuGrid AGB Evolution and Nucleosynthesis Data Set. Universe, 8(3), Article 170. https://doi.org/10.3390/universe8030170Asymptotic Giant Branch (AGB) stars play a key role in the chemical evolution of galaxies. These stars are the fundamental stellar site for the production of light elements such as C, N and F, and half of the elements heavier than Fe via the slow neu... Read More about The NuGrid AGB Evolution and Nucleosynthesis Data Set.
(Li 6, d) and (Li 6, t) reactions on Ne 22 and implications for s -process nucleosynthesis (2021)
Journal Article
Ota, S., Christian, G., Catford, W. N., Lotay, G., Pignatari, M., Battino, U., …Wilkinson, R. (2021). (Li 6, d) and (Li 6, t) reactions on Ne 22 and implications for s -process nucleosynthesis. Physical Review C, 104(5), Article 055806. https://doi.org/10.1103/PhysRevC.104.055806We studied α cluster states in Mg26 via the Ne22(Li6,dγ)Mg26 reaction in inverse kinematics at an energy of 7 MeV/nucleon. States between Ex = 4-14 MeV in Mg26 were populated and relative α spectroscopic factors were determined. Some of these states... Read More about (Li 6, d) and (Li 6, t) reactions on Ne 22 and implications for s -process nucleosynthesis.