Professor Stuart McLelland S.J.McLelland@hull.ac.uk
Deputy Director of the Energy and Environment Institute
Professor Stuart McLelland S.J.McLelland@hull.ac.uk
Deputy Director of the Energy and Environment Institute
Professor Daniel Parsons
Riparian vegetation life stages control the impact of flood sequencing on braided river morphodynamics (2021)
Journal Article
Fernandez, R. L., McLelland, S., Parsons, D. R., & Bodewes, B. (2021). Riparian vegetation life stages control the impact of flood sequencing on braided river morphodynamics. Earth surface processes and landforms : the journal of the British Geomorphological Research Group, 46(11), 2315-2329. https://doi.org/10.1002/esp.5177With riverine flooding set to be more frequent in many parts of the world as a result of climate change, the interactions between fluvial morphodynamics and riparian vegetation may depend in part on the sequence of flood events. This paper describes... Read More about Riparian vegetation life stages control the impact of flood sequencing on braided river morphodynamics.
Beyond equilibrium: Re-evaluating physical modelling of fluvial systems to represent climate changes (2018)
Journal Article
Baynes, E. R., van de Lageweg, W. I., McLelland, S. J., Parsons, D. R., Aberle, J., Dijkstra, J., Henry, P.-Y., Rice, S. P., Thom, M., & Moulin, F. (2018). Beyond equilibrium: Re-evaluating physical modelling of fluvial systems to represent climate changes. Earth-Science Reviews, 181, 82-97. https://doi.org/10.1016/j.earscirev.2018.04.007© 2018 Elsevier B.V. The interactions between water, sediment and biology in fluvial systems are complex and driven by multiple forcing mechanisms across a range of spatial and temporal scales. In a changing climate, some meteorological drivers are e... Read More about Beyond equilibrium: Re-evaluating physical modelling of fluvial systems to represent climate changes.
Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate (2018)
Journal Article
Van De Lageweg, W. I., McLelland, S. J., & Parsons, D. R. (2018). Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate. Earth surface dynamics ESURF ; an interactive open access journal of the European Geosciences Union, 6(1), 203-215. https://doi.org/10.5194/esurf-6-203-2018© Author(s) 2018. Microbial assemblages ( < q > biofilms < /q > ) preferentially develop at water-sediment interfaces and are known to have a considerable influence on sediment stability and erodibility. There is potential for significant impacts on... Read More about Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate.
Near wake of emergent vegetation patches in shallow flow
Journal Article
Wunder, S., Trevisson, M., Heckele, C., Chagot, L., Murphy, B., McLelland, S., Moulin, F., & Eiff, O. (2018). Near wake of emergent vegetation patches in shallow flow. E3S Web of Conferences, 40, Article 02057. https://doi.org/10.1051/e3sconf/20184002057Vegetation patches are particularly difficult to quantify in terms of flow resistance due to their complex geometry and topological behaviour under hydrodynamic loading. They not only influence the water level and mean velocities due to the drag they... Read More about Near wake of emergent vegetation patches in shallow flow.
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search