Dr James Keegans J.D.Keegans@hull.ac.uk
ChETEC-INFRA
People Involved
Miss Kate Womack
Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium (2022)
Journal Article
Den Hartogh, J., Petö, M. K., Lawson, T., Sieverding, A., Brinkman, H., Pignatari, M., & Lugaro, M. (2022). Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium. The Astrophysical journal, 927(2), Article 220. https://doi.org/10.3847/1538-4357/ac4965Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54Cr among materials formed in different regions of the protoplaneta... Read More about Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium.
Radioactive nuclei in the early Solar system: analysis of the 15 isotopes produced by core-collapse supernovae (2021)
Journal Article
Lawson, T. V., Pignatari, M., Stancliffe, R. J., Den Hartogh, J., Jones, S., Fryer, C. L., Gibson, B. K., & Lugaro, M. (2022). Radioactive nuclei in the early Solar system: analysis of the 15 isotopes produced by core-collapse supernovae. Monthly notices of the Royal Astronomical Society, 511(1), 886-902. https://doi.org/10.1093/mnras/stab3684Short-lived radioactive isotopes (SLRs) with half-lives between 0.1 and 100 Myr can be used to probe the origin of the Solar system. In this work, we examine the core-collapse supernovae production of the 15 SLRs produced: 26Al, 36Cl, 41Ca, 53Mn, 60F... Read More about Radioactive nuclei in the early Solar system: analysis of the 15 isotopes produced by core-collapse supernovae.