Skip to main content

Research Repository

Advanced Search

ChETEC-INFRA

People Involved

Miss Kate Womack

Chemical evolution of fluorine in the Milky Way (2022)
Journal Article
Womack, K., Vincenzo, F., Gibson, B., Côté, B., Pignatari, M., Brinkman, H. E., Ventura, P., & Karakas, A. (2023). Chemical evolution of fluorine in the Milky Way. Monthly notices of the Royal Astronomical Society, 518(1), 1543-1556. https://doi.org/10.1093/mnras/stac3180

Fluorine has many different potential sites and channels of production, making narrowing down a dominant site of fluorine production particularly challenging. In this work, we investigate which sources are the dominant contributors to the galactic fl... Read More about Chemical evolution of fluorine in the Milky Way.

Isotopic ratios for C, N, Si, Al, and Ti in C-rich presolar grains from massive stars (2022)
Journal Article
Schofield, J., Pignatari, M., Stancliffe, R. J., & Hoppe, P. (2022). Isotopic ratios for C, N, Si, Al, and Ti in C-rich presolar grains from massive stars. Monthly notices of the Royal Astronomical Society, 517(2), 1803-1820. https://doi.org/10.1093/mnras/stac2498

Certain types of silicon carbide (SiC) grains, e.g. SiC-X grains, and low density (LD) graphites are C-rich presolar grains that are thought to have condensed in the ejecta of core-collapse supernovae (CCSNe). In this work, we compare C, N, Al, Si, a... Read More about Isotopic ratios for C, N, Si, Al, and Ti in C-rich presolar grains from massive stars.

Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium (2022)
Journal Article
Den Hartogh, J., Petö, M. K., Lawson, T., Sieverding, A., Brinkman, H., Pignatari, M., & Lugaro, M. (2022). Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium. The Astrophysical journal, 927(2), Article 220. https://doi.org/10.3847/1538-4357/ac4965

Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54Cr among materials formed in different regions of the protoplaneta... Read More about Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium.