Dr David Parker D.J.Parker@hull.ac.uk
Lecturer
Dr David Parker D.J.Parker@hull.ac.uk
Lecturer
Professor John Murray
Professor Yiannis Papadopoulos Y.I.Papadopoulos@hull.ac.uk
Professor
Dr Umar Manzoor
Dr Nina Dethlefs
Andromeda: A model-connected framework for safety assessment and assurance (2024)
Journal Article
Retouniotis, A., Papadopoulos, Y., & Sorokos, I. (2025). Andromeda: A model-connected framework for safety assessment and assurance. Journal of Systems and Software, 220, Article 112256. https://doi.org/10.1016/j.jss.2024.112256Safety is a key factor in the development of critical systems, encompassing both conventional types, such as aircraft, and modern technologies, such as autonomous vehicles. Failures during their operation can be potentially far-reaching and impact pe... Read More about Andromeda: A model-connected framework for safety assessment and assurance.
A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms (2022)
Journal Article
Walker, C., Rothon, C., Aslansefat, K., Papadopoulos, Y., & Dethlefs, N. (2022). A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms. Lecture notes in computer science, 13525 LNCS, 189-203. https://doi.org/10.1007/978-3-031-15842-1_14With an increasing emphasis on driving down the costs of Operations and Maintenance (O &M) in the Offshore Wind (OSW) sector, comes the requirement to explore new methodology and applications of Deep Learning (DL) to the domain. Condition-based monit... Read More about A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms.
Towards Improving Confidence in Autonomous Vehicle Software: A Study on Traffic Sign Recognition Systems (2021)
Journal Article
Aslansefat, K., Kabir, S., Abdullatif, A., Vasudevan Nair, V., & Papadopoulos, Y. (2021). Towards Improving Confidence in Autonomous Vehicle Software: A Study on Traffic Sign Recognition Systems. Computer, 54(8), 66-76The application of artificial intelligence (AI) and data-driven decision-making systems in autonomous vehicles is growing rapidly. As autonomous vehicles operate in dynamic environments, the risk that they can face an unknown observation is relativel... Read More about Towards Improving Confidence in Autonomous Vehicle Software: A Study on Traffic Sign Recognition Systems.
A novel approach based on stochastic hybrid fault tree to compare alternative flare gas recovery systems (2021)
Journal Article
Khodayee, S. M., Chiacchio, F., & Papadopoulos, Y. (2021). A novel approach based on stochastic hybrid fault tree to compare alternative flare gas recovery systems. IEEE Access, 9, 51029-51049. https://doi.org/10.1109/ACCESS.2021.3069807Flaring has always been an inseparable part of oil production and exploration. Previously, waste gas collected from different parts of facilities was released for safety or operational reasons and combusted on top of a flare stack since there was not... Read More about A novel approach based on stochastic hybrid fault tree to compare alternative flare gas recovery systems.
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search