Skip to main content

Research Repository

Advanced Search

Outputs (4)

A divide-and-conquer approach to neural natural language generation from structured data (2021)
Journal Article
Dethlefs, N., Schoene, A., & Cuayáhuitl, H. (2021). A divide-and-conquer approach to neural natural language generation from structured data. Neurocomputing, 433, 300-309. https://doi.org/10.1016/j.neucom.2020.12.083

Current approaches that generate text from linked data for complex real-world domains can face problems including rich and sparse vocabularies as well as learning from examples of long varied sequences. In this article, we propose a novel divide-and-... Read More about A divide-and-conquer approach to neural natural language generation from structured data.

A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. (2020, July). A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines. Presented at 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK

© 2020 IEEE. Wind energy is one of the fastest-growing sustainable energy sources in the world but relies crucially on efficient and effective operations and maintenance to generate sufficient amounts of energy and reduce downtime of wind turbines an... Read More about A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines.

Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines (2020)
Journal Article
Chatterjee, J., & Dethlefs, N. (2020). Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines. Wind energy, 23(8), 1693-1710. https://doi.org/10.1002/we.2510

The last decade has witnessed an increased interest in applying machine learning techniques to predict faults and anomalies in the operation of wind turbines. These efforts have lately been dominated by deep learning techniques which, as in other fie... Read More about Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines.

Domain transfer for deep natural language generation from abstract meaning representations (2017)
Journal Article
Dethlefs, N. (2017). Domain transfer for deep natural language generation from abstract meaning representations. IEEE computational intelligence magazine, 12(3), 18-28. https://doi.org/10.1109/mci.2017.2708558

Stochastic natural language generation systems that are trained from labelled datasets are often domainspecific in their annotation and in their mapping from semantic input representations to lexical-syntactic outputs. As a result, learnt models fail... Read More about Domain transfer for deep natural language generation from abstract meaning representations.