Skip to main content

Research Repository

Advanced Search

Outputs (6)

Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods (2012)
Journal Article
Shi, J., Curtis, N., Fitton, L. C., O'Higgins, P., & Fagan, M. J. (2012). Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods. Journal of Theoretical Biology, 310, 21-30. https://doi.org/10.1016/j.jtbi.2012.06.006

An accurate, dynamic, functional model of the skull that can be used to predict muscle forces, bite forces, and joint reaction forces would have many uses across a broad range of disciplines. One major issue however with musculoskeletal analyses is t... Read More about Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods.

The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia) (2011)
Journal Article
Curtis, N., Jones, M. E., Junfen, S., O'Higgins, P., Evans, S. E., & Fagan, M. (2011). The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia). Palaeontologia electronica, 12(2), 0 - 0. https://doi.org/10.1371/journal.pone.0029804

Feeding in Sphenodon, the tuatara of New Zealand, is of interest for several reasons. First, the modern animal is threatened by extinction, and some populations are in competition for food with Pacific rats. Second, Sphenodon demonstrates a feeding a... Read More about The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia).

Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development (2011)
Journal Article
Curtis, N., Jones, M. E. H., Shi, J., O'Higgins, P., Evans, S. E., & Fagan, M. J. (2011). Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development. PLoS ONE, 6(12), Article ARTN e29804. https://doi.org/10.1371/journal.pone.0029804

The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces,... Read More about Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development.

The application of muscle wrapping to voxel-based finite element models of skeletal structures (2011)
Journal Article
Liu, J., Shi, J., Fitton, L. C., Phillips, R., O'Higgins, P., & Fagan, M. J. (2012). The application of muscle wrapping to voxel-based finite element models of skeletal structures. Biomechanics and Modeling in Mechanobiology, 11(1-2), 35-47. https://doi.org/10.1007/s10237-011-0291-5

Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action i... Read More about The application of muscle wrapping to voxel-based finite element models of skeletal structures.

Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia) (2009)
Journal Article
Curtis, N., Jones, M. E., Evans, S. E., Shi, J., O'Higgins, P., & Fagan, M. J. (2010). Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia). Journal of the Royal Society interface / the Royal Society, 7(42), 153-160. https://doi.org/10.1098/rsif.2009.0139

The relationship between skull shape and the forces generated during feeding is currently under widespread scrutiny and increasingly involves the use of computer simulations such as finite element analysis. The computer models used to represent skull... Read More about Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia).