Skip to main content

Research Repository

Advanced Search

Outputs (2)

Knickpoints and crescentic bedform interactions in submarine channels (2021)
Journal Article
Chen, Y., Parsons, D. R., Simmons, S. M., Williams, R., Cartigny, M. J. B., Hughes Clarke, J. E., Stacey, C. D., Hage, S., Talling, P. J., Azpiroz‐Zabala, M., Clare, M. A., Hizzett, J. L., Heijnen, M. S., Hunt, J. E., Lintern, D. G., Sumner, E. J., Vellinga, A. J., & Vendettuoli, D. (2021). Knickpoints and crescentic bedform interactions in submarine channels. Sedimentology, 68(4), 1358-1377. https://doi.org/10.1111/sed.12886

Submarine channels deliver globally important volumes of sediments, nutrients, contaminants and organic carbon into the deep sea. Knickpoints are significant topographic features found within numerous submarine channels, which most likely play an imp... Read More about Knickpoints and crescentic bedform interactions in submarine channels.

Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers (2021)
Journal Article
Bailey, L. P., Clare, M. A., Rosenberger, K. J., Cartigny, M. J., Talling, P. J., Paull, C. K., Gwiazda, R., Parsons, D. R., Simmons, S. M., Xu, J., Haigh, I. D., Maier, K. L., McGann, M., Lundsten, E., & Monterey CCE Team. (2021). Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and planetary science letters, 562, Article 116845. https://doi.org/10.1016/j.epsl.2021.116845

Turbidity currents dominate sediment transfer into the deep ocean, and can damage critical seabed infrastructure. It is commonly inferred that powerful turbidity currents are triggered by major external events, such as storms, river floods, or earthq... Read More about Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers.