Skip to main content

Research Repository

Advanced Search

Outputs (93)

High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes (2015)
Journal Article
Tan, D., Lee, T. L., Khong, J. C., Connolley, T., Fezzaa, K., & Mi, J. (2015). High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes. Metallurgical and materials transactions. A, Physical metallurgy and materials science, 46(7), 2851-2861. https://doi.org/10.1007/s11661-015-2872-x

The highly dynamic behaviour of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were stud... Read More about High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes.

Characterization of the residual stresses in spray-formed steels using neutron diffraction (2015)
Journal Article
Lee, T. L., Mi, J., Zhao, S. L., Fan, J. F., Zhang, S. Y., Kabra, S., & Grant, P. S. (2015). Characterization of the residual stresses in spray-formed steels using neutron diffraction. Scripta materialia, 100, 82-85. https://doi.org/10.1016/j.scriptamat.2014.12.019

Neutron diffraction was used to characterize the residual stresses in an as-sprayed tube-shaped steel preform. The measured residual stress distributions were compared with those simulated using finite element method by taking into account the effect... Read More about Characterization of the residual stresses in spray-formed steels using neutron diffraction.

In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures (2014)
Journal Article
Mi, J., Tan, D., & Lee, T. L. (2015). In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures. Metallurgical and Materials Transactions B, 46(4), 1615-1619. https://doi.org/10.1007/s11663-014-0256-z

Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microst... Read More about In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures.

The onset of plasticity of a Zr-based bulk metallic glass (2014)
Journal Article
Huang, Y., Khong, J. C., Connolley, T., & Mi, J. (2014). The onset of plasticity of a Zr-based bulk metallic glass. International Journal of Plasticity, 60, 87-100. https://doi.org/10.1016/j.ijplas.2014.05.003

The deformation behaviors of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glassy alloy under step-controlled tensile loads have been studied in situ and systematically using scanning electron microscopy and synchrotron X-ray diffraction. A circular h... Read More about The onset of plasticity of a Zr-based bulk metallic glass.

The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass (2014)
Journal Article
Huang, Y., Fan, H., Wang, D., Sun, Y., Liu, F., Shen, J., Sun, J., & Mi, J. (2014). The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass. Materials and Design, 58, 284-289. https://doi.org/10.1016/j.matdes.2014.01.067

In the present work, the local atomic ordering and the wear performance of ZrCuAlAg bulk metallic glass (BMG) samples with different diameters have been studied using transmission electron microscopy (TEM) plus autocorrelation function analysis, and... Read More about The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass.

Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods (2014)
Journal Article
Huang, Y., Khong, J. C., Connolley, T., & Mi, J. (2014). Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods. Applied physics letters, 104(3), Article 031912. https://doi.org/10.1063/1.4863095

The plasticity of a ZrTi-based bulk metallic glass composite consisting of glassy matrix and crystalline dendritic phase was studied in-situ under identical tensile loading conditions using scanning electron microscopy and synchrotron X-ray diffracti... Read More about Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods.

The interdendritic-melt solidification control (IMSC) and its effects on the porosity and phase change of a Ni-based superalloy (2013)
Journal Article
Zheng, L., Zhang, G., Xiao, C., Lee, T. L., Han, B., Li, Z., Daisenberger, D., & Mi, J. (2014). The interdendritic-melt solidification control (IMSC) and its effects on the porosity and phase change of a Ni-based superalloy. Scripta materialia, 74, 84-87. https://doi.org/10.1016/j.scriptamat.2013.11.001

A novel interdendritic-melt solidification control (IMSC) technique is developed to manufacture equiaxed Ni-based superalloy with much reduced porosity. The basic concept of IMSC is illustrated. The effects of IMSC on the porosity and phases of IN792... Read More about The interdendritic-melt solidification control (IMSC) and its effects on the porosity and phase change of a Ni-based superalloy.

Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach (2013)
Journal Article
Guo, Z., Mi, J., Xiong, S., & Grant, P. (2014). Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach. Journal of Computational Physics, 257(A), 278-297. https://doi.org/10.1016/j.jcp.2013.10.004

Alloy dendrite growth during solidification with coupled thermal-solute-convection fields has been studied by phase field modeling and simulation. The coupled transport equations were solved using a novel parallel-multigrid numerical approach with hi... Read More about Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach.

Rich tomography techniques for the analysis of microstructure and deformation (2013)
Journal Article
Baimpas, N., Xie, M., Song, X., Hofmann, F., Abbey, B., Marrow, J., Mostafavi, M., Mi, J., & Korsunsky, A. M. (2014). Rich tomography techniques for the analysis of microstructure and deformation. International Journal of Computational Methods, 11(3), Article 1343006. https://doi.org/10.1142/S0219876213430068

Until very recently, the three-dimensionality of the material world presented numerous challenges in terms of characterization, data handling, visualization, and modeling. For this reason, 2D representation of sections, projections, or surfaces remai... Read More about Rich tomography techniques for the analysis of microstructure and deformation.