Skip to main content

Research Repository

Advanced Search

Outputs (5)

X-ray CT-based numerical investigation of nickel foam-based GDLs under compression (2023)
Journal Article
Ercelik, M., Ismail, M. S., Hughes, K. J., Ingham, D. B., Ma, L., & Pourkashanian, M. (2024). X-ray CT-based numerical investigation of nickel foam-based GDLs under compression. International Journal of Hydrogen Energy, 50(Part B), 1338-1357. https://doi.org/10.1016/j.ijhydene.2023.07.001

Nickel foams feature superior structural and transport characteristics and are therefore strong candidates to be used as gas diffusion layers (GDLs) in polymer electrolyte fuel cells (PEFCs). In this work, the impact of compression on the key structu... Read More about X-ray CT-based numerical investigation of nickel foam-based GDLs under compression.

Air-breathing polymer electrolyte fuel cells: A review (2023)
Journal Article
Calili-Cankir, F., Ismail, M. S., Ingham, D. B., Hughes, K. J., Ma, L., & Pourkashanian, M. (2023). Air-breathing polymer electrolyte fuel cells: A review. Renewable energy, 213, 86-108. https://doi.org/10.1016/j.renene.2023.05.134

Air-breathing polymer electrolyte fuel cells have become a promising power source to provide uninterrupted power for small electronic devices. This review focuses primarily on describing how the air-breathing PEFC performance is improved through opti... Read More about Air-breathing polymer electrolyte fuel cells: A review.

Single- and Double-Sided Coated Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells: A Numerical Study (2023)
Journal Article
Okereke, I. C., Ismail, M. S., Ingham, D. B., Hughes, K., Ma, L., & Pourkashanian, M. (2023). Single- and Double-Sided Coated Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells: A Numerical Study. Energies, 16(11), Article 4363. https://doi.org/10.3390/en16114363

A new three-dimensional numerical model of a polymer electrolyte fuel cell (PEFC) with a single straight channel was developed to primarily investigate the important impact of the double-sided microporous layer (MPL) coating on the overall performanc... Read More about Single- and Double-Sided Coated Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells: A Numerical Study.

Optimisation and characterisation of graphene-based microporous layers for polymer electrolyte membrane fuel cells (2023)
Journal Article
Lee, F. C., Ismail, M. S., Zhang, K., Ingham, D. B., Aldakheel, F., Hughes, K. J., Ma, L., El-Kharouf, A., & Pourkashanian, M. (2024). Optimisation and characterisation of graphene-based microporous layers for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 51 part D, 1311-1325. https://doi.org/10.1016/j.ijhydene.2023.05.003

The viability of graphene-based microporous layers (MPLs) for polymer electrolyte membrane fuel cells is critically assessed through detailed characterisation of the morphology, microstructure, transport properties and electrochemical characterisatio... Read More about Optimisation and characterisation of graphene-based microporous layers for polymer electrolyte membrane fuel cells.

Multiphase, three-dimensional PEM fuel cell numerical model with a variable cross-sectional area flow channel (2023)
Journal Article
Tian, J., Ismail, M. S., Ingham, D., Hughes, K. J., Ma, L., & Pourkashanian, M. (2023). Multiphase, three-dimensional PEM fuel cell numerical model with a variable cross-sectional area flow channel. International Journal of Numerical Methods for Heat and Fluid Flow, 33(8), 2778-2799. https://doi.org/10.1108/HFF-02-2023-0075

Purpose: This paper aims to investigate the impact of three different flow channel cross sections on the performance of the fuel cell. Design/methodology/approach: A comprehensive three-dimensional polymer electrolyte membrane fuel cell model has bee... Read More about Multiphase, three-dimensional PEM fuel cell numerical model with a variable cross-sectional area flow channel.