Skip to main content

Research Repository

Advanced Search

Outputs (23)

Masticatory biomechanics in the rabbit: a multi-body dynamics analysis (2014)
Journal Article
Watson, P. J., Gröning, F., Curtis, N., Fitton, L. C., Herrel, A., McCormack, S. W., & Fagan, M. J. (2014). Masticatory biomechanics in the rabbit: a multi-body dynamics analysis. Journal of the Royal Society interface / the Royal Society, 11(99), Article 20140564. https://doi.org/10.1098/rsif.2014.0564

Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbi... Read More about Masticatory biomechanics in the rabbit: a multi-body dynamics analysis.

Development and three-dimensional morphology of the zygomaticotemporal suture in primate skulls (2014)
Journal Article
Curtis, N., Witzel, U., & Fagan, M. J. (2014). Development and three-dimensional morphology of the zygomaticotemporal suture in primate skulls. Folia primatologica, 85(2), 77-87. https://doi.org/10.1159/000357526

Cranial sutures are an essential part of the growing skull, allowing bones to increase in size during growth, with their morphology widely believed to be dictated by the forces and displacements that they experience. The zygomaticotemporal suture in... Read More about Development and three-dimensional morphology of the zygomaticotemporal suture in primate skulls.

Erratum: Cranial sutures work collectively to distribute strain throughout the reptile skull (Journal of The Royal Society Interface (2013) 10 (2013044) DOI: 10.1098/rsif.2013.0442) (2013)
Journal Article
Curtis, N., Jones, M. E., Evans, S. E., O'Higgins, P., & Fagan, M. J. (2013). Erratum: Cranial sutures work collectively to distribute strain throughout the reptile skull (Journal of The Royal Society Interface (2013) 10 (2013044) DOI: 10.1098/rsif.2013.0442). Journal of the Royal Society interface / the Royal Society, 10(87), Article 2013044. https://doi.org/10.1098/rsif.2013.0584

Figure 4 was presented incorrectly, with (a) and (b) displaying the same bite position. The corrected figure below shows different bite positions for (a) and (b) as was initially intended.

The importance of accurate muscle modelling for biomechanical analyses: A case study with a lizard skull (2013)
Journal Article
Gröning, F., Jones, M. E., Curtis, N., Herrel, A., O'Higgins, P., Evans, S. E., & Fagan, M. J. (2013). The importance of accurate muscle modelling for biomechanical analyses: A case study with a lizard skull. Journal of the Royal Society interface / the Royal Society, 10(84), Article 20130216. https://doi.org/10.1098/rsif.2013.0216

Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology an... Read More about The importance of accurate muscle modelling for biomechanical analyses: A case study with a lizard skull.

Cranial sutures work collectively to distribute strain throughout the reptile skull (2013)
Journal Article
Curtis, N., Fagan, M. J., Evans, S. E., Jones, M. E. H., & O'Higgins, P. (2013). Cranial sutures work collectively to distribute strain throughout the reptile skull. Journal of the Royal Society interface / the Royal Society, 10(86), 1-9. https://doi.org/10.1098/rsif.2013.0442

The skull is composed of many bones that come together at sutures. These sutures are important sites of growth, and as growth ceases some become fused while others remain patent. Their mechanical behaviour and how they interact with changing form and... Read More about Cranial sutures work collectively to distribute strain throughout the reptile skull.

The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines (2012)
Journal Article
Jones, M. E., Werneburg, I., Curtis, N., Penrose, R., O'Higgins, P., Fagan, M. J., & Evans, S. E. (2012). The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines. PLoS ONE, 7(11), Article e47852. https://doi.org/10.1371/journal.pone.0047852

Background: Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. Methodology/Principal Finding... Read More about The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines.

Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods (2012)
Journal Article
Shi, J., Curtis, N., Fitton, L. C., O'Higgins, P., & Fagan, M. J. (2012). Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods. Journal of Theoretical Biology, 310, 21-30. https://doi.org/10.1016/j.jtbi.2012.06.006

An accurate, dynamic, functional model of the skull that can be used to predict muscle forces, bite forces, and joint reaction forces would have many uses across a broad range of disciplines. One major issue however with musculoskeletal analyses is t... Read More about Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods.

Shearing Mechanics and the Influence of a Flexible Symphysis During Oral Food Processing in Sphenodon (Lepidosauria: Rhynchocephalia) (2012)
Journal Article
Jones, M. E. H., Evans, S. E., Curtis, N., O'Higgins, P., & Fagan, M. J. (2012). Shearing Mechanics and the Influence of a Flexible Symphysis During Oral Food Processing in Sphenodon (Lepidosauria: Rhynchocephalia). Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(7), 1075-1091. https://doi.org/10.1002/ar.22487

Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development (2011)
Journal Article
Curtis, N., Jones, M. E. H., Shi, J., O'Higgins, P., Evans, S. E., & Fagan, M. J. (2011). Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development. PLoS ONE, 6(12), Article ARTN e29804. https://doi.org/10.1371/journal.pone.0029804

The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces,... Read More about Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development.

The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia) (2011)
Journal Article
Curtis, N., Jones, M. E., Junfen, S., O'Higgins, P., Evans, S. E., & Fagan, M. (2011). The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia). Palaeontologia electronica, 12(2), 0 - 0. https://doi.org/10.1371/journal.pone.0029804

Feeding in Sphenodon, the tuatara of New Zealand, is of interest for several reasons. First, the modern animal is threatened by extinction, and some populations are in competition for food with Pacific rats. Second, Sphenodon demonstrates a feeding a... Read More about The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia).