Skip to main content

Research Repository

Advanced Search

Outputs (33)

Seabed seismographs reveal duration and structure of longest runout sediment flows on Earth (2024)
Journal Article
Baker, M. L., Talling, P. J., Burnett, R., Pope, E. L., Ruffell, S. C., Urlaub, M., Clare, M. A., Jenkins, J., Dietze, M., Neasham, J., Silva Jacinto, R., Hage, S., Hasenhündl, M., Simmons, S. M., Heerema, C. J., Heijnen, M. S., Kunath, P., Cartigny, M. J., McGhee, C., & Parsons, D. R. (2024). Seabed seismographs reveal duration and structure of longest runout sediment flows on Earth. Geophysical research letters, 51(23), Article e2024GL111078. https://doi.org/10.1029/2024GL111078

Turbidity currents carve the deepest canyons on Earth, deposit its largest sediment accumulations, and break seabed telecommunication cables. Powerful canyon-flushing turbidity currents break sensors placed in their path, making them notoriously chal... Read More about Seabed seismographs reveal duration and structure of longest runout sediment flows on Earth.

Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon (2024)
Journal Article
Ruffell, S. C., Talling, P. J., Baker, M. L., Pope, E. L., Heijnen, M. S., Jacinto, R. S., Cartigny, M. J., Simmons, S. M., Clare, M. A., Heerema, C. J., McGhee, C., Hage, S., Hasenhündl, M., & Parsons, D. R. (2024). Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon. Geomorphology, 463, Article 109350. https://doi.org/10.1016/j.geomorph.2024.109350

The largest canyons on Earth occur on the seafloor, and seabed sediment flows called turbidity currents play a key role in carving these submarine canyons. However, the processes by which turbidity currents erode submarine canyons are very poorly doc... Read More about Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon.

Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel (2024)
Journal Article
Hasenhündl, M., Talling, P. J., Pope, E. L., Baker, M. L., Heijnen, M. S., Ruffell, S. C., da Silva Jacinto, R., Jacinto, S., Gaillot, A., Hage, S., Simmons, S. M., Heerema, C. J., McGhee, C., Clare, M. A., & Cartigny, M. J. (2024). Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel. Frontiers in Earth Science, 12, Article 1381019. https://doi.org/10.3389/feart.2024.1381019

Submarine canyons and channels are globally important pathways for sediment, organic carbon, nutrients and pollutants to the deep sea, and they form the largest sediment accumulations on Earth. However, studying these remote submarine systems compreh... Read More about Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel.

Monopile-induced turbulence and sediment redistribution form visible wakes in offshore wind farms (2024)
Journal Article
Bailey, L. P., Dorrell, R. M., Kostakis, I., McKee, D., Parsons, D., Rees, J., Strong, J., Simmons, S., & Forster, R. (2024). Monopile-induced turbulence and sediment redistribution form visible wakes in offshore wind farms. Frontiers in Earth Science, 12, Article 1383726. https://doi.org/10.3389/feart.2024.1383726

Offshore wind farms are becoming an increasingly common feature in the marine environment as a renewable energy source. There is a growing body of evidence on the effects of wind farms on the seabed and its organisms. However, an important and unders... Read More about Monopile-induced turbulence and sediment redistribution form visible wakes in offshore wind farms.

Time-Lapse Seafloor Surveys Reveal How Turbidity Currents and Internal Tides in Monterey Canyon Interact With the Seabed at Centimeter-Scale (2023)
Journal Article
Wolfson-Schwehr, M., Paull, C. K., Caress, D. W., Gwiazda, R., Nieminski, N. M., Talling, P. J., Carvajal, C., Simmons, S., & Troni, G. (2023). Time-Lapse Seafloor Surveys Reveal How Turbidity Currents and Internal Tides in Monterey Canyon Interact With the Seabed at Centimeter-Scale. Journal of Geophysical Research: Earth Surface, 128(4), Article e2022JF006705. https://doi.org/10.1029/2022JF006705

Here we show how ultra-high resolution seabed mapping using new technology can help to understand processes that sculpt submarine canyons. Time-lapse seafloor surveys were conducted in the axis of Monterey Canyon, ∼50km from the canyon head (∼1,840m... Read More about Time-Lapse Seafloor Surveys Reveal How Turbidity Currents and Internal Tides in Monterey Canyon Interact With the Seabed at Centimeter-Scale.

Density stratification controls the bedform phase diagram of saline-gravity currents versus open-channel flows (2023)
Journal Article
Ohata, K., de Cala, I., Dorrell, R. M., Naruse, H., McLelland, S. J., Simmons, S. M., & McCaffrey, W. D. (in press). Density stratification controls the bedform phase diagram of saline-gravity currents versus open-channel flows. Sedimentology, https://doi.org/10.1111/sed.13075

Sedimentary bedforms such as ripples and dunes are generated both by river flows and sediment-laden gravity currents. Gravity current deposits are usually parameterized using existing bedform phase diagrams which are based on data from laboratory exp... Read More about Density stratification controls the bedform phase diagram of saline-gravity currents versus open-channel flows.

Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming (2022)
Journal Article
Pope, E. L., Heijnen, M., Talling, P., Jacinto, R. S., Gaillot, A., Baker, M., Hage, S., Hasenhündl, M., Heerema, C., McGhee, C., Ruffell, S., Simmons, S. M., Cartigny, M., Clare, M., Dennielou, B., Parsons, D. R., Peirce, C., & Urlaub, M. (in press). Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming. Nature Geoscience, https://doi.org/10.1038/s41561-022-01017-x

Landslide-dams, which are often transient, can strongly affect the geomorphology, and sediment and geochemical fluxes, within subaerial fluvial systems. The potential occurrence and impact of analogous landslide-dams in submarine canyons has, however... Read More about Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming.

Longest sediment flows yet measured show how major rivers connect efficiently to deep sea (2022)
Journal Article
Talling, P. J., Baker, M. L., Pope, E. L., Ruffell, S. C., Jacinto, R. S., Heijnen, M. S., Hage, S., Simmons, S. M., Hasenhündl, M., Heerema, C. J., McGhee, C., Apprioual, R., Ferrant, A., Cartigny, M. J., Parsons, D. R., Clare, M. A., Tshimanga, R., Trigg, M. A., Cula, C. A., Faria, R., …Hilton, R. J. (2022). Longest sediment flows yet measured show how major rivers connect efficiently to deep sea. Nature communications, 13(1), Article 4193. https://doi.org/10.1038/s41467-022-31689-3

Here we show how major rivers can efficiently connect to the deep-sea, by analysing the longest runout sediment flows (of any type) yet measured in action on Earth. These seafloor turbidity currents originated from the Congo River-mouth, with one flo... Read More about Longest sediment flows yet measured show how major rivers connect efficiently to deep sea.

First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents (2022)
Journal Article
Pope, E. L., Cartigny, M. J., Clare, M. A., Talling, P. J., Lintern, D. G., Vellinga, A., Hage, S., Açikalin, S., Bailey, L., Chapplow, N., Chen, Y., Eggenhuisen, J. T., Hendry, A., Heerema, C. J., Heijnen, M., Hubbard, S. M., Hunt, J. E., McGhee, C., Parsons, D. R., Simmons, S. M., …Vendettuoli, D. (2022). First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 8(20), eabj3220. https://doi.org/10.1126/sciadv.abj3220

Until recently, despite being one of the most important sediment transport phenomena on Earth, few direct measurements of turbidity currents existed. Consequently, their structure and evolution were poorly understood, particularly whether they are de... Read More about First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents.

Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes? (2022)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Pope, E. L., Bailey, L., Sumner, E., Gwyn Lintern, D., Stacey, C., Parsons, D. R., Simmons, S. M., Chen, Y., Hubbard, S. M., Eggenhuisen, J. T., Kane, I., & Hughes Clarke, J. E. (2022). Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?. Earth and planetary science letters, 584, Article 117481. https://doi.org/10.1016/j.epsl.2022.117481

Submarine channels are the primary conduits for land-derived material, including organic carbon, pollutants, and nutrients, into the deep-sea. The flows (turbidity currents) that traverse these systems can pose hazards to seafloor infrastructure such... Read More about Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?.