Mathieu Gautier
The genomic basis of color pattern polymorphism in the Harlequin ladybird
Gautier, Mathieu; Yamaguchi, Junichi; Foucaud, Julien; Loiseau, Anne; Ausset, Aurélien; Facon, Benoit; Gschloessl, Bernhard; Lagnel, Jacques; Loire, Etienne; Parrinello, Hugues; Severac, Dany; Lopez-Roques, Celine; Donnadieu, Cecile; Manno, Maxime; Berges, Helene; Gharbi, Karim; Lawson-Handley, Lori; Zang, Lian-Sheng; Vogel, Heiko; Estoup, Arnaud; Prud'homme, Benjamin
Authors
Junichi Yamaguchi
Julien Foucaud
Anne Loiseau
Aurélien Ausset
Benoit Facon
Bernhard Gschloessl
Jacques Lagnel
Etienne Loire
Hugues Parrinello
Dany Severac
Celine Lopez-Roques
Cecile Donnadieu
Maxime Manno
Helene Berges
Karim Gharbi
Dr Lori Lawson Handley L.Lawson-Handley@hull.ac.uk
Senior Lecturer
Lian-Sheng Zang
Heiko Vogel
Arnaud Estoup
Benjamin Prud'homme
Abstract
© 2018 The Authors Many animal species comprise discrete phenotypic forms. A common example in natural populations of insects is the occurrence of different color patterns, which has motivated a rich body of ecological and genetic research [1–6]. The occurrence of dark, i.e., melanic, forms displaying discrete color patterns is found across multiple taxa, but the underlying genomic basis remains poorly characterized. In numerous ladybird species (Coccinellidae), the spatial arrangement of black and red patches on adult elytra varies wildly within species, forming strikingly different complex color patterns [7, 8]. In the harlequin ladybird, Harmonia axyridis, more than 200 distinct color forms have been described, which classic genetic studies suggest result from allelic variation at a single, unknown, locus [9, 10]. Here, we combined whole-genome sequencing, population-based genome-wide association studies, gene expression, and functional analyses to establish that the transcription factor Pannier controls melanic pattern polymorphism in H. axyridis. We show that pannier is necessary for the formation of melanic elements on the elytra. Allelic variation in pannier leads to protein expression in distinct domains on the elytra and thus determines the distinct color patterns in H. axyridis. Recombination between pannier alleles may be reduced by a highly divergent sequence of ∼170 kb in the cis-regulatory regions of pannier, with a 50 kb inversion between color forms. This most likely helps maintain the distinct alleles found in natural populations. Thus, we propose that highly variable discrete color forms can arise in natural populations through cis-regulatory allelic variation of a single gene. More than 200 distinct color forms have been described in natural populations of the harlequin ladybird, Harmonia axyridis. Gautier et al. show that this variation is controlled by the transcription factor Pannier. Pannier is necessary to produce black pigment, and its expression pattern prefigures the coloration pattern in each color form.
Citation
Gautier, M., Yamaguchi, J., Foucaud, J., Loiseau, A., Ausset, A., Facon, B., …Prud'homme, B. (2018). The genomic basis of color pattern polymorphism in the Harlequin ladybird. Current biology : CB, 28(20), 3296-3302.e7. https://doi.org/10.1016/j.cub.2018.08.023
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 7, 2018 |
Online Publication Date | Aug 23, 2018 |
Publication Date | Oct 22, 2018 |
Deposit Date | Sep 5, 2018 |
Publicly Available Date | Sep 6, 2018 |
Journal | Current Biology |
Print ISSN | 0960-9822 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 28 |
Issue | 20 |
Pages | 3296-3302.e7 |
DOI | https://doi.org/10.1016/j.cub.2018.08.023 |
Keywords | General Biochemistry, Genetics and Molecular Biology; General Agricultural and Biological Sciences |
Public URL | https://hull-repository.worktribe.com/output/1021057 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0960982218310686?via%3Dihub |
Files
Article
(4.3 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2018 The Authors<br />
<br />
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You might also like
How will the 'molecular revolution' contribute to biological recording?
(2015)
Journal Article