Skip to main content

Action simulation plays a critical role in deceptive action recognition

Tidoni, Emmanuele; Borgomaneri, Sara; di Pellegrino, Giuseppe; Avenanti, Alessio

Authors

Sara Borgomaneri

Giuseppe di Pellegrino

Alessio Avenanti



Abstract

The ability to infer deceptive intents from nonverbal behavior is critical for social interactions. By combining single-pulse and repetitive transcranial magnetic stimulation (TMS) in healthy humans, we provide both correlational and causative evidence that action simulation is actively involved in the ability to recognize deceptive body movements. We recorded motor-evoked potentials during a faked-action discrimination (FAD) task: participants watched videos of actors lifting a cube and judged whether the actors were trying to deceive them concerning the real weight of the cube. Seeing faked actions facilitated the observers' motor system more than truthful actions in a body-part-specific manner, suggesting that motor resonance was sensitive to deceptive movements. Furthermore, we found that TMS virtual lesion to the anterior node of the action observation network, namely the left inferior frontal cortex (IFC), reduced perceptual sensitivity in the FAD task. In contrast, no change in FAD task performance was found after virtual lesions to the left temporoparietal junction (control site). Moreover, virtual lesion to the IFC failed to affect performance in a difficulty-matched spatial-control task that did not require processing of spatiotemporal (acceleration) and configurational (limb displacement) features of seen actions, which are critical to detecting deceptive intent in the actions of others. These findings indicate that the human IFC is critical for recognizing deceptive body movements and suggest thatFADrelies on the simulation of subtle changes in action kinematics within the motor system. © 2013 the authors.

Journal Article Type Article
Publication Date Jan 9, 2013
Journal Journal of Neuroscience
Print ISSN 0270-6474
Electronic ISSN 1529-2401
Publisher Society for Neuroscience
Peer Reviewed Peer Reviewed
Volume 33
Issue 2
Pages 611-623
APA6 Citation Tidoni, E., Borgomaneri, S., di Pellegrino, G., & Avenanti, A. (2013). Action simulation plays a critical role in deceptive action recognition. Journal of Neuroscience, 33(2), 611-623. https://doi.org/10.1523/JNEUROSCI.2228-11.2013
DOI https://doi.org/10.1523/JNEUROSCI.2228-11.2013
Keywords General Neuroscience
Publisher URL http://www.jneurosci.org/content/33/2/611
;