Skip to main content

Morphological effects of vegetation on the tidal–fluvial transition in Holocene estuaries

Lokhorst, Ivar R.; Braat, Lisanne; Leuven, Jasper R. F. W.; Baar, Anne W.; van Oorschot, Mijke; Selaković, Sanja; Kleinhans, Maarten G.

Authors

Ivar R. Lokhorst

Lisanne Braat

Jasper R. F. W. Leuven

Dr Anne Baar A.Baar@hull.ac.uk
Post-doctoral Research Associate

Mijke van Oorschot

Sanja Selaković

Maarten G. Kleinhans



Abstract

Vegetation enhances bank stability and sedimentation to such an extent that it can modify river patterns, but how these processes manifest themselves in full-scale estuarine settings is poorly understood. On the one hand, tidal flats accrete faster in the presence of vegetation, reducing the flood storage and ebb dominance over time. On the other hand flow-focusing effects of a tidal floodplain elevated by mud and vegetation could lead to channel concentration and incision. Here we study isolated and combined effects of mud and tidal marsh vegetation on estuary dimensions. A 2-D hydromorphodynamic estuary model was developed, which was coupled to a vegetation model and used to simulate 100 years of morphological development. Vegetation settlement, growth and mortality were determined by the hydromorphodynamics. Eco-engineering effects of vegetation on the physical system are here limited to hydraulic resistance, which affects erosion and sedimentation pattern through the flow field. We investigated how vegetation, combined with mud, affects the average elevation of tidal flats and controls the system-scale planform. Modelling with vegetation only results in a pattern with the largest vegetation extent in the mixed-energy zone of the estuary, which is generally shallower. Here vegetation can cover more than 50 % of the estuary width while it remains below 10 %–20 % in the outer, tide-dominated zone. This modelled distribution of vegetation along the estuary shows general agreement with trends in natural estuaries observed by aerial image analysis. Without mud, the modelled vegetation has a limited effect on morphology, again peaking in the mixed-energy zone. Numerical modelling with mud only shows that the presence of mud leads to stabilisation and accretion of the intertidal area and a slight infill of the mixed-energy zone. Combined modelling of mud and vegetation leads to mutual enhancement with mud causing new colonisation areas and vegetation stabilising the mud. This occurs in particular in a zone previously described as the bedload convergence zone. While vegetation focusses the flow into the channels such that mud sedimentation in intertidal side channels is prevented on a timescale of decades, the filling of intertidal area and the resulting reduction in tidal prism may cause the infilling of estuaries over centuries.

Journal Article Type Article
Journal Earth Surface Dynamics
Print ISSN 2196-632X
Publisher European Geosciences Union
Peer Reviewed Peer Reviewed
Volume 6
Issue 4
Pages 883-901
APA6 Citation Lokhorst, I. R., Braat, L., Leuven, J. R. F. W., Baar, A. W., van Oorschot, M., Selaković, S., & Kleinhans, M. G. (in press). Morphological effects of vegetation on the tidal–fluvial transition in Holocene estuaries. Earth surface dynamics ESURF ; an interactive open access journal of the European Geosciences Union, 6(4), 883-901. https://doi.org/10.5194/esurf-6-883-2018
DOI https://doi.org/10.5194/esurf-6-883-2018
Publisher URL https://www.earth-surf-dynam.net/6/883/2018/

Files

Published article (15.4 Mb)
PDF

Copyright Statement
© Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.





You might also like



Downloadable Citations

;