S. Andrews
The Nucleosynthetic Yields of Core-collapse Supernovae: Prospects for the Next Generation of Gamma-Ray Astronomy
Andrews, S.; Fryer, C.; Even, W.; Jones, S.; Pignatari, M.
Authors
C. Fryer
W. Even
S. Jones
M. Pignatari
Abstract
Though the neutrino-driven convection model for the core-collapse explosion mechanism has received strong support in recent years, there are still many uncertainties in the explosion parameters—such as explosion energy, remnant mass, and end-of-life stellar abundances as initial conditions. Using a broad set of spherically symmetric core-collapse simulations we examine the effects of these key parameters on explosive nucleosynthesis and final explosion yields. The post-bounce temperature and density evolution of zero-age main-sequence 15, 20, and 25 solar mass progenitors are post-processed through the Nucleosynthesis Grid nuclear network to obtain detailed explosive yields. In particular, this study focuses on radio isotopes that are of particular interest to the next generation of gamma-ray astronomical observations: 43K, 47Ca, 44Sc, 47Sc, 48V, 48Cr, 51Cr, 52Mn, 59Fe, 56Co, 57Co, and 57Ni. These nuclides may be key in advancing our understanding of the inner workings of core-collapse supernovae by probing the parameters of the explosion engine. We find that the isotopes that are strong indicators of explosion energy are 43K, 47Ca, 44Sc, 47Sc, and 59Fe, those that are dependent on the progenitor structure are 48V, 51Cr, and 57Co, and those that probe neither are 48Cr, 52Mn, 57Ni, and 56Co. We discuss the prospects of observing these radionuclides in supernova remnants.
Citation
Andrews, S., Fryer, C., Even, W., Jones, S., & Pignatari, M. (2020). The Nucleosynthetic Yields of Core-collapse Supernovae: Prospects for the Next Generation of Gamma-Ray Astronomy. The Astrophysical journal, 890(1), Article 35. https://doi.org/10.3847/1538-4357/ab64f8
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 23, 2019 |
Online Publication Date | Feb 10, 2020 |
Publication Date | 2020 |
Deposit Date | Feb 27, 2020 |
Publicly Available Date | Oct 27, 2022 |
Journal | The Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 890 |
Issue | 1 |
Article Number | 35 |
DOI | https://doi.org/10.3847/1538-4357/ab64f8 |
Keywords | Space and Planetary Science; Astronomy and Astrophysics |
Public URL | https://hull-repository.worktribe.com/output/3429605 |
Files
Article
(9.8 Mb)
PDF
Copyright Statement
© 2020. The American Astronomical Society. All rights reserved.
You might also like
Progress on nuclear reaction rates affecting the stellar production of <sup>26</sup>Al
(2023)
Journal Article
Horizons: nuclear astrophysics in the 2020s and beyond
(2022)
Journal Article
Isotopic ratios for C, N, Si, Al, and Ti in C-rich presolar grains from massive stars
(2022)
Journal Article
Nucleosynthesis in type Ia supernovae
(2022)
Thesis