University of Hull logo

Superelevation and overspill control secondary flow dynamics in submarine channels

Dorrell, Robert M.; Darby, Stephen E.; Peakall, Jeff; Sumner, Esther J.; Parsons, D. R. (Daniel R.); Wynn, R. B. (Russell Barry)


Stephen Darby

Jeff Peakall

Esther Sumner

R B Wynn


In subaerial and submarine meander bends, fluid flow travels downstream in a helical spiral, the structure of which is determined by centrifugal, hydrostatic, baroclinic, and Coriolis forces that together balance frictional stresses generated by the flow. The sense of rotation of this helical flow, and in particular, whether the near bed flow is directed toward the inner bank, e.g., "river-normal," or outer bank, e.g., "river-reversed," is crucial to the morphodynamic evolution of the channel. However, in recent years, there has been a debate over the river-normal or river-reversed nature of submarine flows. Herein, we develop a novel three-dimensional closure of secondary flow dynamics, incorporating downstream convective material transport, to cast new light on this debate. Specifically, we show that the presence of net radial material transport, arising from flow superelevation and overspill, exerts a key control on the near bed orientation of secondary flow in submarine meanders. Our analysis implies that river-reversed flows are likely to be much more prevalent throughout submarine-canyon fan systems than prior studies have indicated.

Journal Article Type Article
Publication Date Aug 13, 2013
Journal Journal of Geophysical Research: Oceans
Print ISSN 2169-9275
Publisher American Geophysical Union
Peer Reviewed Peer Reviewed
Volume 118
Issue 8
Pages 3895-3915
Keywords REF 2014 submission
Copyright Statement This article is published under a CC-BY licence.


Article.pdf (1.1 Mb)

Copyright Statement
This article is published under a CC-BY licence.

You might also like

Downloadable Citations