Becky A. S. Bibby
MicroRNA-330-5p as a putative modulator of neoadjuvant chemoradiotherapy sensitivity in oesophageal adenocarcinoma
Bibby, Becky A. S.; Reynolds, John V.; Maher, Stephen G.
Authors
John V. Reynolds
Stephen G. Maher
Contributors
Zheng Li
Editor
Abstract
Oesophageal adenocarcinoma (OAC) is the sixth most common cause of cancer deaths worldwide, and the 5-year survival rate for patients diagnosed with the disease is approximately 17%. The standard of care for locally advanced disease is neoadjuvant chemotherapy or, more commonly, combined neoadjuvant chemoradiation therapy (neo-CRT) prior to surgery. Unfortunately, ~60-70% of patients will fail to respond to neo-CRT. Therefore, the identification of biomarkers indicative of patient response to treatment has significant clinical implications in the stratification of patient treatment. Furthermore, understanding the molecular mechanisms underpinning tumour response and resistance to neo-CRT will contribute towards the identification of novel therapeutic targets for enhancing OAC sensitivity to CRT. MicroRNAs (miRNA/miR) function to regulate gene and protein expression and play a causal role in cancer development and progression. MiRNAs have also been identified as modulators of key cellular pathways associated with resistance to CRT. Here, to identify miRNAs associated with resistance to CRT, pre-treatment diagnostic biopsy specimens from patients with OAC were analysed using miRNA-profiling arrays. In pre-treatment biopsies miR-330-5p was the most downregulated miRNA in patients who subsequently failed to respond to neo-CRT. The role of miR-330 as a potential modulator of tumour response and sensitivity to CRT in OAC was further investigated in vitro. Through vector-based overexpression the E2F1/p-AKT survival pathway, as previously described, was confirmed as a target of miR-330 regulation. However, miR-330-mediated alterations to the E2F1/p-AKT pathway were insufficient to significantly alter cellular sensitivity to chemotherapy (cisplatin and 5-flurouracil). In contrast, silencing of miR-330-5p enhanced, albeit subtly, cellular resistance to clinically relevant doses of radiation. This study highlights the need for further investigation into the potential of miR-330-5p as a predictive biomarker of patient sensitivity to neo-CRT and as a novel therapeutic target for manipulating cellular sensitivity to neo-CRT in patients with OAC.
Citation
Bibby, B. A. S., Reynolds, J. V., & Maher, S. G. (2015). MicroRNA-330-5p as a putative modulator of neoadjuvant chemoradiotherapy sensitivity in oesophageal adenocarcinoma. PLoS ONE, 10(7), Article ARTN e0134180. https://doi.org/10.1371/journal.pone.0134180
Acceptance Date | Jul 6, 2015 |
---|---|
Online Publication Date | Jul 29, 2015 |
Publication Date | Jul 29, 2015 |
Deposit Date | Aug 14, 2015 |
Publicly Available Date | Nov 23, 2017 |
Journal | PLoS one |
Print ISSN | 1932-6203 |
Publisher | Public Library of Science |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 7 |
Article Number | ARTN e0134180 |
DOI | https://doi.org/10.1371/journal.pone.0134180 |
Keywords | MicroRNAs, Biopsy, Radiation therapy, Biomarkers, Cancer treatment, Surgical and invasive medical procedures, Plasmid construction, Cancer detection and diagnosis |
Public URL | https://hull-repository.worktribe.com/output/377679 |
Publisher URL | http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134180 |
Contract Date | Nov 23, 2017 |
Files
Published article
(861 Kb)
PDF
Copyright Statement
© 2015 Bibby et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
You might also like
MicroRNA-31 regulates chemosensitivity in malignant pleural mesothelioma
(2017)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search