University of Hull logo

The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks

Acomb, Jonathan C.; Wu, Chunfei; Williams, Paul T.

Authors

Jonathan C. Acomb

Chunfei Wu

Paul T. Williams

Abstract

Nickel, iron, cobalt and copper catalysts were prepared by impregnation and used to produce carbon nanotubes and hydrogen gas from a LDPE feedstock. A two stage catalytic pyrolysis process was used to enable large yields of both products. Plastics samples were pyrolysed in nitrogen at 600 °C, before the evolved gases were passed to a second stage and allowed to deposit carbon onto the catalyst at a temperature of 800 °C. Carbon nanotubes were successfully generated on nickel, iron and cobalt but were barely observed on the copper catalyst. Iron and nickel catalysts gave the largest yield of both hydrogen and carbon nanotubes as a result of metal-support interactions which were neither too strong, like cobalts, nor too weak like copper. These metal support interactions proved a key factor in CNT production. A nickel catalyst with a weaker interaction was prepared using a lower calcination temperature. Yields of both carbon nanotubes and hydrogen gas were lower on the Ni-catalyst prepared at the lower calcination temperature, as a result of sintering of the nickel particles. In addition, the catalyst prepared at a lower calcination temperature produced metal particles which were too large for CNT growth, producing amorphous carbons which deactivate the catalyst instead. Overall the iron catalyst gave the largest yield of CNTs, which is attributed to both its good metal-support interactions and irons large carbon solubility.

Journal Article Type Article
Publication Date Jan 1, 2016
Journal Applied catalysis. B, Environmental
Print ISSN 0926-3373
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 180
Issue January
Pages 497-510
Institution Citation Acomb, J. C., Wu, C., & Williams, P. T. (2016). The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Applied catalysis. B, Environmental, 180(January), (497-510). doi:10.1016/j.apcatb.2015.06.054. ISSN 0926-3373
DOI https://doi.org/10.1016/j.apcatb.2015.06.054
Keywords Plastic; Carbon nanotubes; Hydrogen; Coke; Carbon; Waste
Publisher URL http://www.sciencedirect.com/science/article/pii/S0926337315300072
Copyright Statement © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Additional Information Authors' accepted manuscript of article published in: Applied catalysis B : environmental, 2016, v.180, January

Files

Article.pdf (3.5 Mb)
PDF

Copyright Statement
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



Downloadable Citations