M. Amiri
The CHIME Pulsar Project: System Overview
Amiri, M.; Bandura, K. M.; Boyle, P. J.; Brar, C.; Cliche, J. F.; Crowter, K.; Cubranic, D.; Demorest, P. B.; Denman, N. T.; Dobbs, M.; Dong, F. Q.; Fandino, M.; Fonseca, E.; Good, D. C.; Halpern, M.; Hill, A. S.; Höfer, C.; Kaspi, V. M.; Landecker, T. L.; Leung, C.; Lin, H. H.; Luo, J.; Masui, K. W.; McKee, J. W.; Mena-Parra, J.; Meyers, B. W.; Michilli, D.; Naidu, A.; Newburgh, L.; Ng, C.; Patel, C.; Pinsonneault-Marotte, T.; Ransom, S. M.; Renard, A.; Scholz, P.; Shaw, J. R.; Sikora, A. E.; Stairs, I. H.; Tan, C. M.; Tendulkar, S. P.; Tretyakov, I.; Vanderlinde, K.; Wang, H.; Wang, X.
Authors
K. M. Bandura
P. J. Boyle
C. Brar
J. F. Cliche
K. Crowter
D. Cubranic
P. B. Demorest
N. T. Denman
M. Dobbs
F. Q. Dong
M. Fandino
E. Fonseca
D. C. Good
M. Halpern
A. S. Hill
C. Höfer
V. M. Kaspi
T. L. Landecker
C. Leung
H. H. Lin
J. Luo
K. W. Masui
J. W. McKee
J. Mena-Parra
B. W. Meyers
D. Michilli
A. Naidu
L. Newburgh
C. Ng
C. Patel
T. Pinsonneault-Marotte
S. M. Ransom
A. Renard
P. Scholz
J. R. Shaw
A. E. Sikora
I. H. Stairs
C. M. Tan
S. P. Tendulkar
I. Tretyakov
K. Vanderlinde
H. Wang
X. Wang
Abstract
We present the design, implementation, and performance of the digital pulsar observing system constructed for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). Using accelerated computing, this system processes independent, digitally steered beams formed by the CHIME correlator to simultaneously observe up to 10 radio pulsars and transient sources. Each of these independent streams is processed by the CHIME/Pulsar back-end system, which can coherently dedisperse, in real time, up to dispersion measure values of 2500 pc cm-3. The tracking beams and real-time analysis system are autonomously controlled by a priority-based algorithm that schedules both known sources and positions of interest for observation with observing cadences as rapid as 1 day. Given the distribution of known pulsars and radio-transient sources and the dynamic scheduling, the CHIME/ Pulsar system can monitor 400-500 positions once per sidereal day and observe most sources with declinations greater than -20° once every ~4 weeks. We also discuss the extensive science program enabled through the current modes of data acquisition for CHIME/Pulsar that centers on timing and searching experiments.
Citation
Amiri, M., Bandura, K. M., Boyle, P. J., Brar, C., Cliche, J. F., Crowter, K., Cubranic, D., Demorest, P. B., Denman, N. T., Dobbs, M., Dong, F. Q., Fandino, M., Fonseca, E., Good, D. C., Halpern, M., Hill, A. S., Höfer, C., Kaspi, V. M., Landecker, T. L., Leung, C., …Wang, X. (2021). The CHIME Pulsar Project: System Overview. Astrophysical Journal Supplement, 255(1), Article 5. https://doi.org/10.3847/1538-4365/abfdcb
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 30, 2021 |
Online Publication Date | Jun 28, 2021 |
Publication Date | 2021-07 |
Deposit Date | Nov 29, 2022 |
Journal | Astrophysical Journal, Supplement Series |
Print ISSN | 0067-0049 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 255 |
Issue | 1 |
Article Number | 5 |
DOI | https://doi.org/10.3847/1538-4365/abfdcb |
Public URL | https://hull-repository.worktribe.com/output/4134697 |
You might also like
Modeling nonstationary noise in pulsar timing array data analysis
(2024)
Journal Article
NANOGrav 15-year gravitational-wave background methods
(2024)
Journal Article