Adeela Afzal
The NANOGrav 15yr Data Set: Search for Signals from New Physics
Afzal, Adeela; Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Arzoumanian, Zaven; Baker, Paul T.; Bécsy, Bence; Blanco-Pillado, Jose Juan; Blecha, Laura; Boddy, Kimberly K.; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Burnette, Rand; Case, Robin; Charisi, Maria; Chatterjee, Shami; Chatziioannou, Katerina; Cheeseboro, Belinda D.; Chen, Siyuan; Cohen, Tyler; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Cromartie, H. Thankful; Crowter, Kathryn; Cutler, Curt J.; DeCesar, Megan E.; DeGan, Dallas; Demorest, Paul B.; Deng, Heling; Dolch, Timothy; Drachler, Brendan; von Eckardstein, Richard; Ferrara, Elizabeth C.; Fiore, William; Fonseca, Emmanuel; Freedman, Gabriel E.; Garver-Daniels, Nate; Gentile, Peter A.; Gersbach, Kyle A.; Glaser, Joseph; Good, Deborah C.; Guertin, Lydia; Gültekin, Kayhan; Hazboun, Jeffrey S.; Hourihane, Sophie; Islo, Kristina; Jennings, Ross J.; Johnson, Aaron D.; Jones, Megan L.; Kaiser, Andrew R.; Kelley, Luke Zoltan; Kerr, Matthew;...
Authors
Gabriella Agazie
Akash Anumarlapudi
Anne M. Archibald
Zaven Arzoumanian
Paul T. Baker
Bence Bécsy
Jose Juan Blanco-Pillado
Laura Blecha
Kimberly K. Boddy
Adam Brazier
Paul R. Brook
Sarah Burke-Spolaor
Rand Burnette
Robin Case
Maria Charisi
Shami Chatterjee
Katerina Chatziioannou
Belinda D. Cheeseboro
Siyuan Chen
Tyler Cohen
James M. Cordes
Neil J. Cornish
Fronefield Crawford
H. Thankful Cromartie
Kathryn Crowter
Curt J. Cutler
Megan E. DeCesar
Dallas DeGan
Paul B. Demorest
Heling Deng
Timothy Dolch
Brendan Drachler
Richard von Eckardstein
Elizabeth C. Ferrara
William Fiore
Emmanuel Fonseca
Gabriel E. Freedman
Nate Garver-Daniels
Peter A. Gentile
Kyle A. Gersbach
Joseph Glaser
Deborah C. Good
Lydia Guertin
Kayhan Gültekin
Jeffrey S. Hazboun
Sophie Hourihane
Kristina Islo
Ross J. Jennings
Aaron D. Johnson
Megan L. Jones
Andrew R. Kaiser
Luke Zoltan Kelley
Matthew Kerr
Joey S. Key
Nima Laal
Michael T. Lam
David L. Kaplan
Joseph T.W. Lazio
Vincent S.H. Lee
Natalia Lewandowska
Rafael R. Lino dos Santos
Tyson B. Littenberg
William G. Lamb
Tingting Liu
Duncan R. Lorimer
Jing Luo
Ryan S. Lynch
Chung Pei Ma
Alexander McEwen
James W. McKee
Dustin R. Madison
Maura A. McLaughlin
Natasha McMann
Bradley W. Meyers
Patrick M. Meyers
Chiara M.F. Mingarelli
Andrea Mitridate
Jonathan Nay
Priyamvada Natarajan
Cherry Ng
David J. Nice
Stella Koch Ocker
Ken D. Olum
Timothy T. Pennucci
Benetge B.P. Perera
Polina Petrov
Nihan S. Pol
Henri A. Radovan
Scott M. Ransom
Paul S. Ray
Joseph D. Romano
Shashwat C. Sardesai
Ann Schmiedekamp
Carl Schmiedekamp
Kai Schmitz
Tobias Schröder
Levi Schult
Brent J. Shapiro-Albert
Xavier Siemens
Abstract
The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.
Citation
Afzal, A., Agazie, G., Anumarlapudi, A., Archibald, A. M., Arzoumanian, Z., Baker, P. T., Bécsy, B., Blanco-Pillado, J. J., Blecha, L., Boddy, K. K., Brazier, A., Brook, P. R., Burke-Spolaor, S., Burnette, R., Case, R., Charisi, M., Chatterjee, S., Chatziioannou, K., Cheeseboro, B. D., Chen, S., …Siemens, X. (2023). The NANOGrav 15yr Data Set: Search for Signals from New Physics. Astrophysical journal. Letters, 951(1), Article L11. https://doi.org/10.3847/2041-8213/acdc91
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 7, 2023 |
Online Publication Date | Jun 29, 2023 |
Publication Date | Jul 1, 2023 |
Deposit Date | Jul 14, 2023 |
Publicly Available Date | Aug 14, 2023 |
Journal | Astrophysical Journal Letters |
Print ISSN | 2041-8205 |
Electronic ISSN | 2041-8213 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 951 |
Issue | 1 |
Article Number | L11 |
DOI | https://doi.org/10.3847/2041-8213/acdc91 |
Public URL | https://hull-repository.worktribe.com/output/4321462 |
Files
Published article
(13.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2023. The Author(s). Published by the American Astronomical Society.
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
You might also like
Modeling nonstationary noise in pulsar timing array data analysis
(2024)
Journal Article
NANOGrav 15-year gravitational-wave background methods
(2024)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search