Gabriella Agazie
The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Arzoumanian, Zaven; Baker, Paul T.; Bécsy, Bence; Blecha, Laura; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Case, Robin; Casey-Clyde, J. Andrew; Charisi, Maria; Chatterjee, Shami; Cohen, Tyler; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Cromartie, H. Thankful; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Digman, Matthew C.; Dolch, Timothy; Drachler, Brendan; Ferrara, Elizabeth C.; Fiore, William; Fonseca, Emmanuel; Freedman, Gabriel E.; Garver-Daniels, Nate; Gentile, Peter A.; Glaser, Joseph; Good, Deborah C.; Gültekin, Kayhan; Hazboun, Jeffrey S.; Hourihane, Sophie; Jennings, Ross J.; Johnson, Aaron D.; Jones, Megan L.; Kaiser, Andrew R.; Kaplan, David L.; Kelley, Luke Zoltan; Kerr, Matthew; Key, Joey S.; Laal, Nima; Lam, Michael T.; Lamb, William G.; W. Lazio, T. Joseph; Lewandowska, Natalia; Liu, Tingting; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Ma, Chung Pei; Madison, Dustin R.; M...
Authors
Akash Anumarlapudi
Anne M. Archibald
Zaven Arzoumanian
Paul T. Baker
Bence Bécsy
Laura Blecha
Adam Brazier
Paul R. Brook
Sarah Burke-Spolaor
Robin Case
J. Andrew Casey-Clyde
Maria Charisi
Shami Chatterjee
Tyler Cohen
James M. Cordes
Neil J. Cornish
Fronefield Crawford
H. Thankful Cromartie
Kathryn Crowter
Megan E. DeCesar
Paul B. Demorest
Matthew C. Digman
Timothy Dolch
Brendan Drachler
Elizabeth C. Ferrara
William Fiore
Emmanuel Fonseca
Gabriel E. Freedman
Nate Garver-Daniels
Peter A. Gentile
Joseph Glaser
Deborah C. Good
Kayhan Gültekin
Jeffrey S. Hazboun
Sophie Hourihane
Ross J. Jennings
Aaron D. Johnson
Megan L. Jones
Andrew R. Kaiser
David L. Kaplan
Luke Zoltan Kelley
Matthew Kerr
Joey S. Key
Nima Laal
Michael T. Lam
William G. Lamb
T. Joseph W. Lazio
Natalia Lewandowska
Tingting Liu
Duncan R. Lorimer
Jing Luo
Ryan S. Lynch
Chung Pei Ma
Dustin R. Madison
Alexander McEwen
James W. McKee
Maura A. McLaughlin
Natasha McMann
Bradley W. Meyers
Patrick M. Meyers
Chiara M.F. Mingarelli
Andrea Mitridate
Cherry Ng
David J. Nice
Stella Koch Ocker
Ken D. Olum
Timothy T. Pennucci
Benetge B.P. Perera
Polina Petrov
Nihan S. Pol
Henri A. Radovan
Scott M. Ransom
Paul S. Ray
Joseph D. Romano
Shashwat C. Sardesai
Ann Schmiedekamp
Carl Schmiedekamp
Kai Schmitz
Brent J. Shapiro-Albert
Xavier Siemens
Joseph Simon
Magdalena S. Siwek
Ingrid H. Stairs
Daniel R. Stinebring
Kevin Stovall
Abhimanyu Susobhanan
Joseph K. Swiggum
Jacob Taylor
Stephen R. Taylor
Jacob E. Turner
Caner Unal
Michele Vallisneri
Rutger van Haasteren
Sarah J. Vigeland
Haley M. Wahl
Caitlin A. Witt
Olivia Young
Abstract
Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these data sets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15 yr data set. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings-Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems. At our most sensitive frequency of 6 nHz, we place a sky-averaged 95% upper limit of 8 × 10−15 on the strain amplitude. We also calculate an exclusion volume and a corresponding effective radius, within which we can rule out the presence of black hole binaries emitting at a given frequency.
Citation
Agazie, G., Anumarlapudi, A., Archibald, A. M., Arzoumanian, Z., Baker, P. T., Bécsy, B., Blecha, L., Brazier, A., Brook, P. R., Burke-Spolaor, S., Case, R., Casey-Clyde, J. A., Charisi, M., Chatterjee, S., Cohen, T., Cordes, J. M., Cornish, N. J., Crawford, F., Cromartie, H. T., Crowter, K., …Young, O. (2023). The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries. Astrophysical journal. Letters, 951(2), Article L50. https://doi.org/10.3847/2041-8213/ace18a
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 29, 2023 |
Online Publication Date | Jul 17, 2023 |
Publication Date | Jul 1, 2023 |
Deposit Date | Jul 25, 2023 |
Publicly Available Date | Aug 10, 2023 |
Journal | Astrophysical Journal Letters |
Print ISSN | 2041-8205 |
Electronic ISSN | 2041-8213 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 951 |
Issue | 2 |
Article Number | L50 |
DOI | https://doi.org/10.3847/2041-8213/ace18a |
Public URL | https://hull-repository.worktribe.com/output/4342825 |
Files
Published article
(2.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2023. The Author(s). Published by the American Astronomical Society.
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
You might also like
Modeling nonstationary noise in pulsar timing array data analysis
(2024)
Journal Article
NANOGrav 15-year gravitational-wave background methods
(2024)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search