Yunhai Li
Eco-economic performance and application potential of a novel dual-source heat pump heating system
Li, Yunhai; Cui, Yu; Song, Zhiying; Zhao, Xudong; Li, Jing; Shen, Chao
Authors
Yu Cui
Zhiying Song
Professor Xudong Zhao Xudong.Zhao@hull.ac.uk
Professor of Engineering/ Director of Research
Dr Jing Li Jing.Li@hull.ac.uk
Senior Research Fellow
Chao Shen
Abstract
Decarbonization of building heating is the key to carbon neutrality. Heat pumps have great potential to replace non-renewable heating devices, thus creating economic and renewable heating systems. To overcome the application challenges of conventional heat pumps (HP), a novel dual-source heat pump (DSHP) heating system and corresponding model are proposed and validated in this paper. Simulated by the validated experiment-based model, the performance of the DSHP heating system is numerically investigated by comparing with different systems in various regions. The results show that the DSHP system has higher seasonal performance factors and near-zero defrosting costs when compared to the conventional HP heating system in different regions, resulting in 1.88%–21.53% reductions in annual heating bills and carbon emissions. Compared to the gas boiler heating system, the DSHP system can achieve 20.64%–54.36% of annual heating bill savings and 14.39%–86.09% of annual carbon reductions in selected regions. The investigation of heating characteristics and eco-economic performance of the DSHP system in different regions provided important guiding significance for the DSHP in global application, and thus contributes to achieving bill-saving and low-carbon heating and sustainable development.
Citation
Li, Y., Cui, Y., Song, Z., Zhao, X., Li, J., & Shen, C. (2023). Eco-economic performance and application potential of a novel dual-source heat pump heating system. Energy, 283, Article 128478. https://doi.org/10.1016/j.energy.2023.128478
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 17, 2023 |
Online Publication Date | Jul 18, 2023 |
Publication Date | Nov 15, 2023 |
Deposit Date | Sep 14, 2023 |
Publicly Available Date | Jul 19, 2024 |
Journal | Energy |
Print ISSN | 0360-5442 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 283 |
Article Number | 128478 |
DOI | https://doi.org/10.1016/j.energy.2023.128478 |
Public URL | https://hull-repository.worktribe.com/output/4355428 |
Files
Accepted manuscript
(1.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search