Gabriella Agazie
The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background
Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Baker, Paul T.; Bécsy, Bence; Blecha, Laura; Bonilla, Alexander; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Burnette, Rand; Case, Robin; Casey-Clyde, J. Andrew; Charisi, Maria; Chatterjee, Shami; Chatziioannou, Katerina; Cheeseboro, Belinda D.; Chen, Siyuan; Cohen, Tyler; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Cromartie, H. Thankful; Crowter, Kathryn; Cutler, Curt J.; D’Orazio, Daniel J.; DeCesar, Megan E.; DeGan, Dallas; Demorest, Paul B.; Deng, Heling; Dolch, Timothy; Drachler, Brendan; Ferrara, Elizabeth C.; Fiore, William; Fonseca, Emmanuel; Freedman, Gabriel E.; Gardiner, Emiko; Garver-Daniels, Nate; Gentile, Peter A.; Gersbach, Kyle A.; Glaser, Joseph; Good, Deborah C.; Gültekin, Kayhan; Hazboun, Jeffrey S.; Hourihane, Sophie; Islo, Kristina; Jennings, Ross J.; Johnson, Aaron; Jones, Megan L.; Kaiser, Andrew R.; Kaplan, David L.; Kelley, Luke Zoltan; Kerr, Matthew; Key, Joey S.; Laal, Nima; L...
Authors
Akash Anumarlapudi
Anne M. Archibald
Paul T. Baker
Bence Bécsy
Laura Blecha
Alexander Bonilla
Adam Brazier
Paul R. Brook
Sarah Burke-Spolaor
Rand Burnette
Robin Case
J. Andrew Casey-Clyde
Maria Charisi
Shami Chatterjee
Katerina Chatziioannou
Belinda D. Cheeseboro
Siyuan Chen
Tyler Cohen
James M. Cordes
Neil J. Cornish
Fronefield Crawford
H. Thankful Cromartie
Kathryn Crowter
Curt J. Cutler
Daniel J. D’Orazio
Megan E. DeCesar
Dallas DeGan
Paul B. Demorest
Heling Deng
Timothy Dolch
Brendan Drachler
Elizabeth C. Ferrara
William Fiore
Emmanuel Fonseca
Gabriel E. Freedman
Emiko Gardiner
Nate Garver-Daniels
Peter A. Gentile
Kyle A. Gersbach
Joseph Glaser
Deborah C. Good
Kayhan Gültekin
Jeffrey S. Hazboun
Sophie Hourihane
Kristina Islo
Ross J. Jennings
Aaron Johnson
Megan L. Jones
Andrew R. Kaiser
David L. Kaplan
Luke Zoltan Kelley
Matthew Kerr
Joey S. Key
Nima Laal
Michael T. Lam
William G. Lamb
T. Joseph W. Lazio
Natalia Lewandowska
Tyson B. Littenberg
Tingting Liu
Jing Luo
Ryan S. Lynch
Chung Pei Ma
Dustin R. Madison
Alexander McEwen
James W. McKee
Maura A. McLaughlin
Natasha McMann
Bradley W. Meyers
Patrick M. Meyers
Chiara M.F. Mingarelli
Andrea Mitridate
Priyamvada Natarajan
Cherry Ng
David J. Nice
Stella Koch Ocker
Ken D. Olum
Timothy T. Pennucci
Benetge B.P. Perera
Polina Petrov
Nihan S. Pol
Henri A. Radovan
Scott M. Ransom
Paul S. Ray
Joseph D. Romano
Jessie C. Runnoe
Shashwat C. Sardesai
Ann Schmiedekamp
Carl Schmiedekamp
Kai Schmitz
Levi Schult
Brent J. Shapiro-Albert
Xavier Siemens
Joseph Simon
Magdalena S. Siwek
Ingrid H. Stairs
Daniel R. Stinebring
Kevin Stovall
Jerry P. Sun
Abstract
The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations.
Citation
Agazie, G., Anumarlapudi, A., Archibald, A. M., Baker, P. T., Bécsy, B., Blecha, L., Bonilla, A., Brazier, A., Brook, P. R., Burke-Spolaor, S., Burnette, R., Case, R., Casey-Clyde, J. A., Charisi, M., Chatterjee, S., Chatziioannou, K., Cheeseboro, B. D., Chen, S., Cohen, T., Cordes, J. M., …Sun, J. P. (2023). The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophysical journal. Letters, 952(2), Article L37. https://doi.org/10.3847/2041-8213/ace18b
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 26, 2023 |
Online Publication Date | Aug 1, 2023 |
Publication Date | Aug 1, 2023 |
Deposit Date | Aug 15, 2023 |
Publicly Available Date | Aug 29, 2023 |
Journal | Astrophysical Journal Letters |
Print ISSN | 2041-8205 |
Electronic ISSN | 2041-8213 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 952 |
Issue | 2 |
Article Number | L37 |
DOI | https://doi.org/10.3847/2041-8213/ace18b |
Public URL | https://hull-repository.worktribe.com/output/4360855 |
Files
Published article
(35.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2023. The Author(s). Published by the American Astronomical Society.
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
You might also like
Modeling nonstationary noise in pulsar timing array data analysis
(2024)
Journal Article
NANOGrav 15-year gravitational-wave background methods
(2024)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search