Skip to main content

Research Repository

Advanced Search

Angiopoetin-2 signals do not mediate the hypervascularization of islets in type 2 diabetes

Shah, Payal; Lueschen, Navina; Ardestani, Amin; Oberholzer, Jose; Olerud, Johan; Carlsson, Per Ola; Maedler, Kathrin

Authors

Payal Shah

Navina Lueschen

Jose Oberholzer

Johan Olerud

Per Ola Carlsson

Kathrin Maedler



Abstract

Aims Changes in the islet vasculature have been implicated in the regulation of β-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the β-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature and is closely related to organ inflammation and angiogenesis. In this study we aimed to identify whether the vessel area within the islets changes in diabetes and whether such changes would be triggered by the Tie-antagonist Ang-2. Methods Immunohistochemical and qPCR analyses to follow islet vascularization and Ang/Tie levels were performed in human pancreatic autopsies and isolated human and mouse islets. The effect of Ang-2 was assessed in β-cell-specific Ang-2 overexpressing mice during high fat diet (HFD) feeding. Results Islet vessel area was increased in autopsy pancreases from patients with T2D. The vessel markers Tie-1, Tie-2 and CD31 were upregulated in mouse islets upon HFD feeding from 8 to 24 weeks. Ang-2 was transiently upregulated in mouse islets at 8 weeks of HFD and under glucolipotoxic conditions (22.2 mM glucose/ 0.5 mM palmitate) in vitro in human and mouse islets, in contrast to its downregulation by cytokines (IL-1β, IFN- and TNF-α). Ang-1 on the other hand was oppositely regulated, with a significant loss under glucolipotoxic condition, a trend to reduce in islets from patients with T2D and an upregulation by cytokines. Modulation of such changes in Ang-2 by its overexpression or the inhibition of its receptor Tie-2 impaired β-cell function at basal conditions but protected islets from cytokine induced apoptosis. In vivo, β-cell-specific Ang-2 overexpression in mice induced hypervascularization under normal diet but contrastingly led to hypovascularized islets in response to HFD together with increased apoptosis and reduced β-cell mass. Conclusions Islet hypervascularization occurs in T2D. A balanced expression of the Ang1/Ang2 system is important for islet physiology. Ang-2 prevents β-cell mass and islet vascular adaptation in response to HFD feeding with no major influence on glucose homeostasis.

Citation

Shah, P., Lueschen, N., Ardestani, A., Oberholzer, J., Olerud, J., Carlsson, P. O., & Maedler, K. (2016). Angiopoetin-2 signals do not mediate the hypervascularization of islets in type 2 diabetes. PLoS ONE, 11(9), Article e0161834. https://doi.org/10.1371/journal.pone.0161834

Journal Article Type Article
Acceptance Date Aug 12, 2016
Online Publication Date Sep 12, 2016
Publication Date Sep 1, 2016
Deposit Date Jan 4, 2024
Publicly Available Date Jan 8, 2024
Journal PLoS ONE
Print ISSN 1932-6203
Electronic ISSN 1932-6203
Publisher Public Library of Science
Peer Reviewed Peer Reviewed
Volume 11
Issue 9
Article Number e0161834
DOI https://doi.org/10.1371/journal.pone.0161834
Public URL https://hull-repository.worktribe.com/output/4461687

Files

Published article (2.7 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0

Copyright Statement
Copyright: © 2016 Shah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




You might also like



Downloadable Citations