Payal Shah
Angiopoetin-2 signals do not mediate the hypervascularization of islets in type 2 diabetes
Shah, Payal; Lueschen, Navina; Ardestani, Amin; Oberholzer, Jose; Olerud, Johan; Carlsson, Per Ola; Maedler, Kathrin
Authors
Navina Lueschen
Dr Amin Ardestani A.Ardestani@hull.ac.uk
Senior Lecturer
Jose Oberholzer
Johan Olerud
Per Ola Carlsson
Kathrin Maedler
Abstract
Aims Changes in the islet vasculature have been implicated in the regulation of β-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the β-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature and is closely related to organ inflammation and angiogenesis. In this study we aimed to identify whether the vessel area within the islets changes in diabetes and whether such changes would be triggered by the Tie-antagonist Ang-2. Methods Immunohistochemical and qPCR analyses to follow islet vascularization and Ang/Tie levels were performed in human pancreatic autopsies and isolated human and mouse islets. The effect of Ang-2 was assessed in β-cell-specific Ang-2 overexpressing mice during high fat diet (HFD) feeding. Results Islet vessel area was increased in autopsy pancreases from patients with T2D. The vessel markers Tie-1, Tie-2 and CD31 were upregulated in mouse islets upon HFD feeding from 8 to 24 weeks. Ang-2 was transiently upregulated in mouse islets at 8 weeks of HFD and under glucolipotoxic conditions (22.2 mM glucose/ 0.5 mM palmitate) in vitro in human and mouse islets, in contrast to its downregulation by cytokines (IL-1β, IFN- and TNF-α). Ang-1 on the other hand was oppositely regulated, with a significant loss under glucolipotoxic condition, a trend to reduce in islets from patients with T2D and an upregulation by cytokines. Modulation of such changes in Ang-2 by its overexpression or the inhibition of its receptor Tie-2 impaired β-cell function at basal conditions but protected islets from cytokine induced apoptosis. In vivo, β-cell-specific Ang-2 overexpression in mice induced hypervascularization under normal diet but contrastingly led to hypovascularized islets in response to HFD together with increased apoptosis and reduced β-cell mass. Conclusions Islet hypervascularization occurs in T2D. A balanced expression of the Ang1/Ang2 system is important for islet physiology. Ang-2 prevents β-cell mass and islet vascular adaptation in response to HFD feeding with no major influence on glucose homeostasis.
Citation
Shah, P., Lueschen, N., Ardestani, A., Oberholzer, J., Olerud, J., Carlsson, P. O., & Maedler, K. (2016). Angiopoetin-2 signals do not mediate the hypervascularization of islets in type 2 diabetes. PLoS ONE, 11(9), Article e0161834. https://doi.org/10.1371/journal.pone.0161834
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 12, 2016 |
Online Publication Date | Sep 12, 2016 |
Publication Date | Sep 1, 2016 |
Deposit Date | Jan 4, 2024 |
Publicly Available Date | Jan 8, 2024 |
Journal | PLoS ONE |
Print ISSN | 1932-6203 |
Electronic ISSN | 1932-6203 |
Publisher | Public Library of Science |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Issue | 9 |
Article Number | e0161834 |
DOI | https://doi.org/10.1371/journal.pone.0161834 |
Public URL | https://hull-repository.worktribe.com/output/4461687 |
Files
Published article
(2.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
Copyright: © 2016 Shah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
You might also like
Abnormal acinar–β-cell crosstalk in type 2 diabetes
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search