Skip to main content

Research Repository

Advanced Search

How to Detect an Astrophysical Nanohertz Gravitational Wave Background

Bécsy, Bence; Cornish, Neil J.; Meyers, Patrick M.; Kelley, Luke Zoltan; Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Arzoumanian, Zaven; Baker, Paul T.; Blecha, Laura; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Casey-Clyde, J. Andrew; Charisi, Maria; Chatterjee, Shami; Chatziioannou, Katerina; Cohen, Tyler; Cordes, James M.; Crawford, Fronefield; Cromartie, H. Thankful; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ferrara, Elizabeth C.; Fiore, William; Fonseca, Emmanuel; Freedman, Gabriel E.; Garver-Daniels, Nate; Gentile, Peter A.; Glaser, Joseph; Good, Deborah C.; Gültekin, Kayhan; Hazboun, Jeffrey S.; Hourihane, Sophie; Jennings, Ross J.; Johnson, Aaron D.; Jones, Megan L.; Kaiser, Andrew R.; Kaplan, David L.; Kerr, Matthew; Key, Joey S.; Laal, Nima; Lam, Michael T.; Lamb, William G.; W. Lazio, T. Joseph; Lewandowska, Natalia; Littenberg, Tyson B.; Liu, Tingting; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Ma, Chung Pei; Madiso...

Authors

Bence Bécsy

Neil J. Cornish

Patrick M. Meyers

Luke Zoltan Kelley

Gabriella Agazie

Akash Anumarlapudi

Anne M. Archibald

Zaven Arzoumanian

Paul T. Baker

Laura Blecha

Adam Brazier

Paul R. Brook

Sarah Burke-Spolaor

J. Andrew Casey-Clyde

Maria Charisi

Shami Chatterjee

Katerina Chatziioannou

Tyler Cohen

James M. Cordes

Fronefield Crawford

H. Thankful Cromartie

Kathryn Crowter

Megan E. DeCesar

Paul B. Demorest

Timothy Dolch

Elizabeth C. Ferrara

William Fiore

Emmanuel Fonseca

Gabriel E. Freedman

Nate Garver-Daniels

Peter A. Gentile

Joseph Glaser

Deborah C. Good

Kayhan Gültekin

Jeffrey S. Hazboun

Sophie Hourihane

Ross J. Jennings

Aaron D. Johnson

Megan L. Jones

Andrew R. Kaiser

David L. Kaplan

Matthew Kerr

Joey S. Key

Nima Laal

Michael T. Lam

William G. Lamb

T. Joseph W. Lazio

Natalia Lewandowska

Tyson B. Littenberg

Tingting Liu

Duncan R. Lorimer

Jing Luo

Ryan S. Lynch

Chung Pei Ma

Dustin R. Madison

Alexander McEwen

James W. McKee

Maura A. McLaughlin

Natasha McMann

Bradley W. Meyers

Chiara M.F. Mingarelli

Andrea Mitridate

Cherry Ng

David J. Nice

Stella Koch Ocker

Ken D. Olum

Timothy T. Pennucci

Benetge B.P. Perera

Nihan S. Pol

Henri A. Radovan

Scott M. Ransom

Paul S. Ray

Joseph D. Romano

Shashwat C. Sardesai

Ann Schmiedekamp

Carl Schmiedekamp

Kai Schmitz

Brent J. Shapiro-Albert

Xavier Siemens

Joseph Simon

Magdalena S. Siwek

Sophia V. Sosa Fiscella

Ingrid H. Stairs

Daniel R. Stinebring

Kevin Stovall

Abhimanyu Susobhanan

Joseph K. Swiggum

Stephen R. Taylor

Jacob E. Turner

Caner Unal

Michele Vallisneri

Rutger van Haasteren

Sarah J. Vigeland

Haley M. Wahl

Caitlin A. Witt

Olivia Young



Abstract

Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nanohertz frequency band. The most plausible source of this background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for this background and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated data sets, even though their fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them.

Citation

Bécsy, B., Cornish, N. J., Meyers, P. M., Kelley, L. Z., Agazie, G., Anumarlapudi, A., Archibald, A. M., Arzoumanian, Z., Baker, P. T., Blecha, L., Brazier, A., Brook, P. R., Burke-Spolaor, S., Casey-Clyde, J. A., Charisi, M., Chatterjee, S., Chatziioannou, K., Cohen, T., Cordes, J. M., Crawford, F., …Young, O. (2023). How to Detect an Astrophysical Nanohertz Gravitational Wave Background. The Astrophysical journal, 959(1), Article 9. https://doi.org/10.3847/1538-4357/ad09e4

Journal Article Type Article
Acceptance Date Nov 4, 2023
Online Publication Date Nov 29, 2023
Publication Date Dec 10, 2023
Deposit Date Dec 4, 2023
Publicly Available Date Dec 7, 2023
Journal Astrophysical Journal
Print ISSN 0004-637X
Electronic ISSN 1538-4357
Publisher American Astronomical Society
Peer Reviewed Peer Reviewed
Volume 959
Issue 1
Article Number 9
DOI https://doi.org/10.3847/1538-4357/ad09e4
Keywords Gravitational waves; Gravitational wave sources; Gravitational wave astronomy; Supermassive black holes; Astronomy data analysis; Bayesian statistics; Millisecond pulsars
Public URL https://hull-repository.worktribe.com/output/4467148

Files

Published article (3.1 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0

Copyright Statement
© 2023. The Author(s). Published by the American Astronomical Society.
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.




You might also like



Downloadable Citations