Bence Bécsy
How to Detect an Astrophysical Nanohertz Gravitational Wave Background
Bécsy, Bence; Cornish, Neil J.; Meyers, Patrick M.; Kelley, Luke Zoltan; Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Arzoumanian, Zaven; Baker, Paul T.; Blecha, Laura; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Casey-Clyde, J. Andrew; Charisi, Maria; Chatterjee, Shami; Chatziioannou, Katerina; Cohen, Tyler; Cordes, James M.; Crawford, Fronefield; Cromartie, H. Thankful; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ferrara, Elizabeth C.; Fiore, William; Fonseca, Emmanuel; Freedman, Gabriel E.; Garver-Daniels, Nate; Gentile, Peter A.; Glaser, Joseph; Good, Deborah C.; Gültekin, Kayhan; Hazboun, Jeffrey S.; Hourihane, Sophie; Jennings, Ross J.; Johnson, Aaron D.; Jones, Megan L.; Kaiser, Andrew R.; Kaplan, David L.; Kerr, Matthew; Key, Joey S.; Laal, Nima; Lam, Michael T.; Lamb, William G.; W. Lazio, T. Joseph; Lewandowska, Natalia; Littenberg, Tyson B.; Liu, Tingting; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Ma, Chung Pei; Madiso...
Authors
Neil J. Cornish
Patrick M. Meyers
Luke Zoltan Kelley
Gabriella Agazie
Akash Anumarlapudi
Anne M. Archibald
Zaven Arzoumanian
Paul T. Baker
Laura Blecha
Adam Brazier
Paul R. Brook
Sarah Burke-Spolaor
J. Andrew Casey-Clyde
Maria Charisi
Shami Chatterjee
Katerina Chatziioannou
Tyler Cohen
James M. Cordes
Fronefield Crawford
H. Thankful Cromartie
Kathryn Crowter
Megan E. DeCesar
Paul B. Demorest
Timothy Dolch
Elizabeth C. Ferrara
William Fiore
Emmanuel Fonseca
Gabriel E. Freedman
Nate Garver-Daniels
Peter A. Gentile
Joseph Glaser
Deborah C. Good
Kayhan Gültekin
Jeffrey S. Hazboun
Sophie Hourihane
Ross J. Jennings
Aaron D. Johnson
Megan L. Jones
Andrew R. Kaiser
David L. Kaplan
Matthew Kerr
Joey S. Key
Nima Laal
Michael T. Lam
William G. Lamb
T. Joseph W. Lazio
Natalia Lewandowska
Tyson B. Littenberg
Tingting Liu
Duncan R. Lorimer
Jing Luo
Ryan S. Lynch
Chung Pei Ma
Dustin R. Madison
Alexander McEwen
James W. McKee
Maura A. McLaughlin
Natasha McMann
Bradley W. Meyers
Chiara M.F. Mingarelli
Andrea Mitridate
Cherry Ng
David J. Nice
Stella Koch Ocker
Ken D. Olum
Timothy T. Pennucci
Benetge B.P. Perera
Nihan S. Pol
Henri A. Radovan
Scott M. Ransom
Paul S. Ray
Joseph D. Romano
Shashwat C. Sardesai
Ann Schmiedekamp
Carl Schmiedekamp
Kai Schmitz
Brent J. Shapiro-Albert
Xavier Siemens
Joseph Simon
Magdalena S. Siwek
Sophia V. Sosa Fiscella
Ingrid H. Stairs
Daniel R. Stinebring
Kevin Stovall
Abhimanyu Susobhanan
Joseph K. Swiggum
Stephen R. Taylor
Jacob E. Turner
Caner Unal
Michele Vallisneri
Rutger van Haasteren
Sarah J. Vigeland
Haley M. Wahl
Caitlin A. Witt
Olivia Young
Abstract
Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nanohertz frequency band. The most plausible source of this background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for this background and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated data sets, even though their fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them.
Citation
Bécsy, B., Cornish, N. J., Meyers, P. M., Kelley, L. Z., Agazie, G., Anumarlapudi, A., Archibald, A. M., Arzoumanian, Z., Baker, P. T., Blecha, L., Brazier, A., Brook, P. R., Burke-Spolaor, S., Casey-Clyde, J. A., Charisi, M., Chatterjee, S., Chatziioannou, K., Cohen, T., Cordes, J. M., Crawford, F., …Young, O. (2023). How to Detect an Astrophysical Nanohertz Gravitational Wave Background. The Astrophysical journal, 959(1), Article 9. https://doi.org/10.3847/1538-4357/ad09e4
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 4, 2023 |
Online Publication Date | Nov 29, 2023 |
Publication Date | Dec 10, 2023 |
Deposit Date | Dec 4, 2023 |
Publicly Available Date | Dec 7, 2023 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 959 |
Issue | 1 |
Article Number | 9 |
DOI | https://doi.org/10.3847/1538-4357/ad09e4 |
Keywords | Gravitational waves; Gravitational wave sources; Gravitational wave astronomy; Supermassive black holes; Astronomy data analysis; Bayesian statistics; Millisecond pulsars |
Public URL | https://hull-repository.worktribe.com/output/4467148 |
Files
Published article
(3.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2023. The Author(s). Published by the American Astronomical Society.
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
You might also like
Modeling nonstationary noise in pulsar timing array data analysis
(2024)
Journal Article
NANOGrav 15-year gravitational-wave background methods
(2024)
Journal Article