Skip to main content

Research Repository

Advanced Search

Mechanical performance of 3D printed polylactide during degradation

Moetazedian, Amirpasha; Gleadall, Andrew; Han, Xiaoxiao; Ekinci, Alper; Mele, Elisa; Silberschmidt, Vadim V.

Authors

Andrew Gleadall

Xiaoxiao Han

Alper Ekinci

Elisa Mele

Vadim V. Silberschmidt



Abstract

Although widely-used biodegradable polymers have been extensively studied for conventional manufacturing processes, this is the first study considering the effect of interfacial bonds between extruded filaments – the most important aspect related to additive manufacturing – on degradation at 37 °C. Its results improve the confidence in the material extrusion additive manufacturing process and negate one of the crucial unknown factors for bioresorbable products, by demonstrating that the interface degrades in a similar manner to the bulk polymer material. To do this, specially designed micro-tensile specimens were developed to analyse the degradation of 3D-printed parts for the first time at 37 °C and accelerated temperatures. The mechanical properties of the interface between extruded filaments (Z specimen) were compared against the control, i.e. along filaments (F specimen), under medically relevant testing conditions (submerged at 37 °C). Monitoring the degradation of tensile strength showed that both specimen types behaved similarly, exhibiting an initial delay followed by a reduction in properties. Comparison of thermal and chemical properties revealed that during the early stage of degradation, crystallinity was the dominating factor, whilst at later stages, mechanical properties were mainly defined by the molecular weight and autocatalytic degradation. The findings suggest that understanding developed in the long-standing field of polymer degradation can be applied to additive-manufactured medical devices, which unavoidably contain interlayer interfaces.

Citation

Moetazedian, A., Gleadall, A., Han, X., Ekinci, A., Mele, E., & Silberschmidt, V. V. (2021). Mechanical performance of 3D printed polylactide during degradation. Additive Manufacturing, 38, Article 101764. https://doi.org/10.1016/j.addma.2020.101764

Journal Article Type Article
Acceptance Date Dec 6, 2020
Online Publication Date Dec 18, 2020
Publication Date Feb 1, 2021
Deposit Date Jan 15, 2024
Publicly Available Date Jan 16, 2024
Journal Additive Manufacturing
Print ISSN 2214-7810
Electronic ISSN 2214-8604
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 38
Article Number 101764
DOI https://doi.org/10.1016/j.addma.2020.101764
Public URL https://hull-repository.worktribe.com/output/4511907
Related Public URLs https://repository.lboro.ac.uk/articles/journal_contribution/Mechanical_performance_of_3D_printed_polylactide_during_degradation/13675426

Files




You might also like



Downloadable Citations