Skip to main content

Research Repository

Advanced Search

Passivity-based Rieman Liouville fractional order sliding mode control of three phase inverter in a grid-connected photovoltaic system

Khan, Luqman; Khan, Laiq; Agha, Shahrukh; Hafeez, Kamran; Iqbal, Jamshed

Authors

Luqman Khan

Laiq Khan

Shahrukh Agha

Kamran Hafeez



Abstract

Photovoltaic (PV) system parameters are always non-linear due to variable environmental conditions. The Maximum power point tracking (MPPT) is difficult under multiple uncertainties, disruptions and the occurrence of time-varying stochastic conditions. Therefore, Passivity based Fractional order Sliding-Mode controller (PBSMC) is proposed to examine and develop a storage function in error tracking for PV power and direct voltage in this research work. A unique sliding surface for Fractional Order Sliding Mode Control (FOSMC) framework is proposed and its stability and finite time convergence is proved by implementing Lyapunov stability method. An additional input of sliding mode control (SMC) is also added to a passive system to boost the controller performance by removing the rapid uncertainties and disturbances. Therefore, PBSMC, along with globally consistent control efficiency under varying operating conditions is implemented with enhanced system damping and substantial robustness. The novelty of the proposed technique lies in a unique sliding surface for FOSMC framework based on Riemann Liouville (R-L) fractional calculus. Results have shown that the proposed control technique reduces the tracking error in PV output power, under variable irradiance conditions, by 81%, compared to fractional order proportional integral derivative (FOPID) controller. It is reduced by 39%, when compared to passivity based control (PBC) and 28%, when compared to passivity based FOPID (EPBFOPID). The proposed technique led to the least total harmonic distortion in the grid side voltage and current. The tracking time of PV output power is 0.025 seconds in PBSMC under varying solar irradiance, however FOPID, PBC, EPBFOPID, have failed to converge fully. Similarly the dc link voltage has tracked the reference voltage in 0.05 seconds however the rest of the methods either could not converge, or converged after significant amount of time. During solar irradiance and temperature change, the photovoltaic output power has converged in 0.018 seconds using PBSMC, however remaining methods failed to converge or track fully and the dc link voltage has minimum tracking error due to PBSMC as compared to the other methods. Furthermore, the photovoltaic output power converges to the reference power in 0.1 seconds in power grid voltage drop, whereas other methods failed to converge fully. In addition power is also injected from the PV inverter into the grid at unity power factor.

Citation

Khan, L., Khan, L., Agha, S., Hafeez, K., & Iqbal, J. (2024). Passivity-based Rieman Liouville fractional order sliding mode control of three phase inverter in a grid-connected photovoltaic system. PLoS ONE, 19(2), Article e0296797. https://doi.org/10.1371/journal.pone.0296797

Journal Article Type Article
Acceptance Date Dec 19, 2023
Online Publication Date Feb 7, 2024
Publication Date Feb 7, 2024
Deposit Date Feb 7, 2024
Publicly Available Date Feb 8, 2024
Journal PLoS ONE
Print ISSN 1932-6203
Publisher Public Library of Science
Peer Reviewed Peer Reviewed
Volume 19
Issue 2
Article Number e0296797
DOI https://doi.org/10.1371/journal.pone.0296797
Public URL https://hull-repository.worktribe.com/output/4538156

Files

Published article (9.8 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0

Copyright Statement
Copyright: © 2024 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



You might also like



Downloadable Citations