Gabriella Agazie
The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory
Agazie, Gabriella; Arzoumanian, Zaven; Baker, Paul T.; Bécsy, Bence; Blecha, Laura; Blumer, Harsha; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Burnette, Rand; Case, Robin; Casey-Clyde, J. Andrew; Charisi, Maria; Chatterjee, Shami; Cohen, Tyler; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Cromartie, H. Thankful; DeCesar, Megan E.; DeGan, Dallas; Demorest, Paul B.; Dolch, Timothy; Drachler, Brendan; Ellis, Justin A.; Ferdman, Robert D.; Ferrara, Elizabeth C.; Fiore, William; Fonseca, Emmanuel; Freedman, Gabriel E.; Garver-Daniels, Nate; Gentile, Peter A.; Glaser, Joseph; Good, Deborah C.; Gültekin, Kayhan; Hazboun, Jeffrey S.; Jennings, Ross J.; Johnson, Aaron D.; Jones, Megan L.; Kaiser, Andrew R.; Kaplan, David L.; Kelley, Luke Zoltan; Key, Joey S.; Laal, Nima; Lam, Michael T.; Lamb, William G.; W. Lazio, T. Joseph; Lewandowska, Natalia; Liu, Tingting; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Ma, Chung Pei; Madison, Dustin R.; McEwen, Alexander; McKee, Jam...
Authors
Zaven Arzoumanian
Paul T. Baker
Bence Bécsy
Laura Blecha
Harsha Blumer
Adam Brazier
Paul R. Brook
Sarah Burke-Spolaor
Rand Burnette
Robin Case
J. Andrew Casey-Clyde
Maria Charisi
Shami Chatterjee
Tyler Cohen
James M. Cordes
Neil J. Cornish
Fronefield Crawford
H. Thankful Cromartie
Megan E. DeCesar
Dallas DeGan
Paul B. Demorest
Timothy Dolch
Brendan Drachler
Justin A. Ellis
Robert D. Ferdman
Elizabeth C. Ferrara
William Fiore
Emmanuel Fonseca
Gabriel E. Freedman
Nate Garver-Daniels
Peter A. Gentile
Joseph Glaser
Deborah C. Good
Kayhan Gültekin
Jeffrey S. Hazboun
Ross J. Jennings
Aaron D. Johnson
Megan L. Jones
Andrew R. Kaiser
David L. Kaplan
Luke Zoltan Kelley
Joey S. Key
Nima Laal
Michael T. Lam
William G. Lamb
T. Joseph W. Lazio
Natalia Lewandowska
Tingting Liu
Duncan R. Lorimer
Jing Luo
Ryan S. Lynch
Chung Pei Ma
Dustin R. Madison
Alexander McEwen
James W. McKee
Maura A. McLaughlin
Patrick M. Meyers
Chiara M.F. Mingarelli
Andrea Mitridate
Cherry Ng
David J. Nice
Stella Koch Ocker
Ken D. Olum
Timothy T. Pennucci
Nihan S. Pol
Scott M. Ransom
Paul S. Ray
Joseph D. Romano
Shashwat C. Sardesai
Kai Schmitz
Xavier Siemens
Joseph Simon
Magdalena S. Siwek
Sophia V. Sosa Fiscella
Renée Spiewak
Ingrid H. Stairs
Daniel R. Stinebring
Kevin Stovall
Jerry P. Sun
Joseph K. Swiggum
Jacob Taylor
Stephen R. Taylor
Jacob E. Turner
Caner Unal
Michele Vallisneri
Sarah J. Vigeland
Haley M. Wahl
Caitlin A. Witt
Olivia Young
The NANOGrav Collaboration
Abstract
We present the results of a Bayesian search for gravitational wave (GW) memory in the NANOGrav 12.5 yr data set. We find no convincing evidence for any gravitational wave memory signals in this data set. We find a Bayes factor of 2.8 in favor of a model that includes a memory signal and common spatially uncorrelated red noise (CURN) compared to a model including only a CURN. However, further investigation shows that a disproportionate amount of support for the memory signal comes from three dubious pulsars. Using a more flexible red-noise model in these pulsars reduces the Bayes factor to 1.3. Having found no compelling evidence, we go on to place upper limits on the strain amplitude of GW memory events as a function of sky location and event epoch. These upper limits are computed using a signal model that assumes the existence of a common, spatially uncorrelated red noise in addition to a GW memory signal. The median strain upper limit as a function of sky position is approximately 3.3 × 10−14. We also find that there are some differences in the upper limits as a function of sky position centered around PSR J0613−0200. This suggests that this pulsar has some excess noise that can be confounded with GW memory. Finally, the upper limits as a function of burst epoch continue to improve at later epochs. This improvement is attributable to the continued growth of the pulsar timing array.
Citation
Agazie, G., Arzoumanian, Z., Baker, P. T., Bécsy, B., Blecha, L., Blumer, H., Brazier, A., Brook, P. R., Burke-Spolaor, S., Burnette, R., Case, R., Casey-Clyde, J. A., Charisi, M., Chatterjee, S., Cohen, T., Cordes, J. M., Cornish, N. J., Crawford, F., Cromartie, H. T., DeCesar, M. E., …The NANOGrav Collaboration. (2024). The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory. The Astrophysical journal, 963(1), Article 61. https://doi.org/10.3847/1538-4357/ad0726
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 24, 2023 |
Online Publication Date | Feb 28, 2024 |
Publication Date | Mar 1, 2024 |
Deposit Date | Feb 29, 2024 |
Publicly Available Date | Mar 5, 2024 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 963 |
Issue | 1 |
Article Number | 61 |
DOI | https://doi.org/10.3847/1538-4357/ad0726 |
Keywords | Space and Planetary Science; Astronomy and Astrophysics |
Public URL | https://hull-repository.worktribe.com/output/4567061 |
Files
Published article
(1.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2024. The Author(s). Published by the American Astronomical Society.
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
You might also like
Modeling nonstationary noise in pulsar timing array data analysis
(2024)
Journal Article
NANOGrav 15-year gravitational-wave background methods
(2024)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search