Umberto Battino
Impact of Newly Measured Nuclear Reaction Rates on 26Al Ejected Yields from Massive Stars
Battino, Umberto; Roberti, Lorenzo; Lawson, Thomas V.; Laird, Alison M.; Todd, Lewis
Authors
Abstract
Over the last three years, the rates of all the main nuclear reactions involving the destruction and production of 26Al in stars (26Al(n, p)26Mg, 26Al(n, α)23Na, 26Al(p, γ)27Si and 25Mg(p, γ)26Al) have been re-evaluated thanks to new high-precision experimental measurements of their cross sections at energies of astrophysical interest, considerably reducing the uncertainties in the nuclear physics affecting their nucleosynthesis. We computed the nucleosynthetic yields ejected by the explosion of a high-mass star (20 M⊙, Z = 0.0134) using the FRANEC stellar code, considering two explosion energies, 1.2 × 1051 erg and 3 × 1051 erg. We quantify the change in the ejected amount of 26Al and other key species that is predicted when the new rate selection is adopted instead of the reaction rates from the STARLIB nuclear library. Additionally, the ratio of our ejected yields of 26Al to those of 14 other short-lived radionuclides (36Cl, 41Ca, 53Mn, 60Fe, 92Nb, 97Tc, 98Tc, 107Pd, 126Sn, 129I, 36Cs, 146Sm, 182Hf, 205Pb) are compared to early solar system isotopic ratios, inferred from meteorite measurements. The total ejected 26Al yields vary by a factor of ~3 when adopting the new rates or the STARLIB rates. Additionally, the new nuclear reaction rates also impact the predicted abundances of short-lived radionuclides in the early solar system relative to 26Al. However, it is not possible to reproduce all the short-lived radionuclide isotopic ratios with our massive star model alone, unless a second stellar source could be invoked, which must have been active in polluting the pristine solar nebula at a similar time of a core-collapse supernova.
Citation
Battino, U., Roberti, L., Lawson, T. V., Laird, A. M., & Todd, L. (2024). Impact of Newly Measured Nuclear Reaction Rates on 26Al Ejected Yields from Massive Stars. Universe, 10(5), Article 204. https://doi.org/10.3390/universe10050204
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 26, 2024 |
Online Publication Date | May 1, 2024 |
Publication Date | May 1, 2024 |
Deposit Date | Jul 25, 2024 |
Publicly Available Date | Jul 30, 2024 |
Journal | Universe |
Electronic ISSN | 2218-1997 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 5 |
Article Number | 204 |
DOI | https://doi.org/10.3390/universe10050204 |
Keywords | evolved stars; stellar evolution; stellar interiors; nucleosynthesis; supernovae |
Public URL | https://hull-repository.worktribe.com/output/4659172 |
Files
Published article
(419 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
You might also like
(Li 6, d) and (Li 6, t) reactions on Ne 22 and implications for s -process nucleosynthesis
(2021)
Journal Article
The NuGrid AGB Evolution and Nucleosynthesis Data Set
(2022)
Journal Article
The chemical evolution of the solar neighbourhood for planet-hosting stars
(2023)
Journal Article
Progress on nuclear reaction rates affecting the stellar production of <sup>26</sup>Al
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search