Imad Eddine Ibrahim Bekkouch
Adversarial Reconstruction Loss for Domain Generalization
Bekkouch, Imad Eddine Ibrahim; Nicolae, Dragos Constantin; Khan, Adil; Kazmi, S. M.Ahsan; Khattak, Asad Masood; Ibragimov, Bulat
Authors
Dragos Constantin Nicolae
Professor Adil Khan A.M.Khan@hull.ac.uk
Professor
S. M.Ahsan Kazmi
Asad Masood Khattak
Bulat Ibragimov
Abstract
The biggest fear when deploying machine learning models to the real world is their ability to handle the new data. This problem is significant especially in medicine, where models trained on rich high-quality data extracted from large hospitals do not scale to small regional hospitals. One of the clinical challenges addressed in this work is magnetic resonance image generalization for improved visualization and diagnosis of hip abnormalities such as femoroacetabular impingement and dysplasia. Domain Generalization (DG) is a field in machine learning that tries to solve the model's dependency on the training data by leveraging many related but different data sources. We present a new method for DG that is both efficient and fast, unlike the most current state of art methods, which add a substantial computational burden making it hard to fine-tune. Our model trains an autoencoder setting on top of the classifier, but the encoder is trained on the adversarial reconstruction loss forcing it to forget style information while extracting features useful for classification. Our approach aims to force the encoder to generate domain-invariant representations that are still category informative by pushing it in both directions. Our method has proven universal and was validated on four different benchmarks for domain generalization, outperforming state of the art on RMNIST, VLCS and IXMAS with a 0.70% increase in accuracy and providing comparable results on PACS with a 0.02% difference. Our method was also evaluated for unsupervised domain adaptation and has shown to be quite an effective method against over-fitting.
Citation
Bekkouch, I. E. I., Nicolae, D. C., Khan, A., Kazmi, S. M., Khattak, A. M., & Ibragimov, B. (2021). Adversarial Reconstruction Loss for Domain Generalization. IEEE Access, 9, 42424-42437. https://doi.org/10.1109/ACCESS.2021.3066041
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 6, 2021 |
Online Publication Date | Mar 15, 2021 |
Publication Date | Jan 1, 2021 |
Deposit Date | May 7, 2024 |
Publicly Available Date | May 15, 2024 |
Journal | IEEE Access |
Electronic ISSN | 2169-3536 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 9 |
Pages | 42424-42437 |
DOI | https://doi.org/10.1109/ACCESS.2021.3066041 |
Keywords | Computer vision; Deep learning; Domain adaptation; Domain generalization; Transfer learning |
Public URL | https://hull-repository.worktribe.com/output/4661375 |
Files
Published article
(2.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
You might also like
A hybrid contextual framework to predict severity of infectious disease: COVID-19 case study
(2024)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search