Abdurrazzaq Ahmad
Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction
Ahmad, Abdurrazzaq; Oko, Eni; Ibhadon, Alex
Authors
Eni Oko
Dr Alex Ibhadon A.O.Ibhadon@hull.ac.uk
Reader, Catalysis and Reactor Engineering for Energy Generation and Chemical Synthesis
Abstract
This study reports the comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction process. Two cases were simulated, case A – hydrogen liquefaction with ortho-parahydrogen conversion and case B – hydrogen liquefaction without ortho-parahydrogen conversion. This is the first study that presents a comparative energy and exergy analysis between such two cases. In this research, a hydrogen liquefaction process was designed adopting cascaded five-stage Brayton refrigeration cycle. The process was simulated in Aspen PLUS. The process used a mixed refrigerant (of liquefied natural gas) refrigeration cycle to precool the gaseous hydrogen feed from 26 °C temperature to −192 °C temperature, and mixed refrigerant (of nelium) was subsequently used to further deep-cool the the hydrogen stream from −192 °C temperature to −245.99 °C temperature in the cryogenic section of the process. Liquefaction was achieved by expanding the hydrogen through Joule-Thomson valve at −248.37 °C and 1 bar. The simulated results of the two cases showed the specific energy consumption of case A to be 8.45 kWhr/kgLH, and that of case B to be 15.65 kWhr/kgLH respectively. The results also indicated a total exergy efficiency of 92.42% in case A and 87.18% in case B. The research results showed that the hydrogen liquefaction designed with configuration of ortho-parahydrogen conversion has better performance indicators than the liquefaction without ortho-parahydrogen conversion. Therefore, hydrogen liquefaction with ortho-parahydrogen conversion can be considered in the design and development of new hydrogen liquefaction plants. Process optimization is recommended to further enhance the specific energy consumption and exergy efficiency of both processes.
Citation
Ahmad, A., Oko, E., & Ibhadon, A. (2024). Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction. International Journal of Hydrogen Energy, 78, 991-1003. https://doi.org/10.1016/j.ijhydene.2024.06.368
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 26, 2024 |
Online Publication Date | Jul 2, 2024 |
Publication Date | Aug 12, 2024 |
Deposit Date | Jul 2, 2024 |
Publicly Available Date | Sep 23, 2024 |
Journal | International Journal of Hydrogen Energy |
Print ISSN | 0360-3199 |
Electronic ISSN | 0360-3199 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 78 |
Pages | 991-1003 |
DOI | https://doi.org/10.1016/j.ijhydene.2024.06.368 |
Keywords | Ortho-para-hydrogen conversion; Hydrogen liquefaction; Energy analysis; Exergy analysis; Process simulation |
Public URL | https://hull-repository.worktribe.com/output/4731217 |
Files
Published article
(4.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0
Copyright Statement
© 2024 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
You might also like
Modelling of a post-combustion CO₂ capture process using neural networks
(2015)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search